Yonglei Jiang , Kaiyuan Gu , Luyao Song , Cunzhi Zhang , Jiahong Liu , Haiyan Chu , Teng Yang
{"title":"施肥和轮作通过调节土壤理化和微生物特性提高烟草产量","authors":"Yonglei Jiang , Kaiyuan Gu , Luyao Song , Cunzhi Zhang , Jiahong Liu , Haiyan Chu , Teng Yang","doi":"10.1016/j.still.2024.106364","DOIUrl":null,"url":null,"abstract":"<div><div>Soil microbiome network structure is highly related to nutrient cycling and crop growth in agroecosystems. However, how agricultural practices influence soil microbial network structure and interact with co-varying soil properties, crop yield, and other microbial properties is still unclear. In the present study, soil physicochemical properties, microbial biomass and enzyme activity, and agronomic traits of tobacco were measured across seven fertilization treatments (Conventional Fertilization [CF], Incremental Fertilization [IF] 10 %, Reduced Fertilization [RF] 10 %, RF 20 %, CF combined with Rice Straw [CF + RS], RF 10 % combined with Green Manure [RF 10 % + GM], and No Fertilization [NF]) and two cropping treatments (continuous tobacco and corn-tobacco rotation). Microbial diversity and network structure were also characterized using Illumina MiSeq sequencing and network analysis. According to the results, cropping and fertilization treatments significantly affected twelve soil physicochemical properties and thirteen microbial properties. Among the microbial properties, the proportion of module hubs was most strongly correlated with tobacco yield (Pearson r = 0.613). Soil pH, cation exchange capacity (CEC), soil bacterial richness and module hubs constituted the best combination of variables that cumulatively explained 63.1 % of the variation in tobacco yield, among which module hubs individually explained 18.5 % of the variation in yield. Furthermore, the piecewise structural equation model showed that module hubs in microbial network were significantly affected by agricultural practices, and they indirectly drove tobacco yield by regulating soil properties. Overall, the results of the present study suggest that microbial properties (particularly network-associated keystone species) can mediate the effects of soil properties on crop yield, although the main influence or limiting factor for yield is still soil properties.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"247 ","pages":"Article 106364"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fertilization and rotation enhance tobacco yield by regulating soil physicochemical and microbial properties\",\"authors\":\"Yonglei Jiang , Kaiyuan Gu , Luyao Song , Cunzhi Zhang , Jiahong Liu , Haiyan Chu , Teng Yang\",\"doi\":\"10.1016/j.still.2024.106364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil microbiome network structure is highly related to nutrient cycling and crop growth in agroecosystems. However, how agricultural practices influence soil microbial network structure and interact with co-varying soil properties, crop yield, and other microbial properties is still unclear. In the present study, soil physicochemical properties, microbial biomass and enzyme activity, and agronomic traits of tobacco were measured across seven fertilization treatments (Conventional Fertilization [CF], Incremental Fertilization [IF] 10 %, Reduced Fertilization [RF] 10 %, RF 20 %, CF combined with Rice Straw [CF + RS], RF 10 % combined with Green Manure [RF 10 % + GM], and No Fertilization [NF]) and two cropping treatments (continuous tobacco and corn-tobacco rotation). Microbial diversity and network structure were also characterized using Illumina MiSeq sequencing and network analysis. According to the results, cropping and fertilization treatments significantly affected twelve soil physicochemical properties and thirteen microbial properties. Among the microbial properties, the proportion of module hubs was most strongly correlated with tobacco yield (Pearson r = 0.613). Soil pH, cation exchange capacity (CEC), soil bacterial richness and module hubs constituted the best combination of variables that cumulatively explained 63.1 % of the variation in tobacco yield, among which module hubs individually explained 18.5 % of the variation in yield. Furthermore, the piecewise structural equation model showed that module hubs in microbial network were significantly affected by agricultural practices, and they indirectly drove tobacco yield by regulating soil properties. Overall, the results of the present study suggest that microbial properties (particularly network-associated keystone species) can mediate the effects of soil properties on crop yield, although the main influence or limiting factor for yield is still soil properties.</div></div>\",\"PeriodicalId\":49503,\"journal\":{\"name\":\"Soil & Tillage Research\",\"volume\":\"247 \",\"pages\":\"Article 106364\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil & Tillage Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167198724003659\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724003659","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Fertilization and rotation enhance tobacco yield by regulating soil physicochemical and microbial properties
Soil microbiome network structure is highly related to nutrient cycling and crop growth in agroecosystems. However, how agricultural practices influence soil microbial network structure and interact with co-varying soil properties, crop yield, and other microbial properties is still unclear. In the present study, soil physicochemical properties, microbial biomass and enzyme activity, and agronomic traits of tobacco were measured across seven fertilization treatments (Conventional Fertilization [CF], Incremental Fertilization [IF] 10 %, Reduced Fertilization [RF] 10 %, RF 20 %, CF combined with Rice Straw [CF + RS], RF 10 % combined with Green Manure [RF 10 % + GM], and No Fertilization [NF]) and two cropping treatments (continuous tobacco and corn-tobacco rotation). Microbial diversity and network structure were also characterized using Illumina MiSeq sequencing and network analysis. According to the results, cropping and fertilization treatments significantly affected twelve soil physicochemical properties and thirteen microbial properties. Among the microbial properties, the proportion of module hubs was most strongly correlated with tobacco yield (Pearson r = 0.613). Soil pH, cation exchange capacity (CEC), soil bacterial richness and module hubs constituted the best combination of variables that cumulatively explained 63.1 % of the variation in tobacco yield, among which module hubs individually explained 18.5 % of the variation in yield. Furthermore, the piecewise structural equation model showed that module hubs in microbial network were significantly affected by agricultural practices, and they indirectly drove tobacco yield by regulating soil properties. Overall, the results of the present study suggest that microbial properties (particularly network-associated keystone species) can mediate the effects of soil properties on crop yield, although the main influence or limiting factor for yield is still soil properties.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.