Akihiko Sato , Yasuo Kitane , Kunitomo Sugiura , Yoshinao Goi
{"title":"剪切和压缩疲劳损伤导致编织粗纱 GFRP 的刚度退化","authors":"Akihiko Sato , Yasuo Kitane , Kunitomo Sugiura , Yoshinao Goi","doi":"10.1016/j.compstruct.2024.118725","DOIUrl":null,"url":null,"abstract":"<div><div>Woven roving GFRP is widely used in the structural members of GFRP bridges which are subject to compression or shear stress. However, it is not revealed well about fatigue strength and stiffness degradation under these loading conditions. This study aims to clarify the fatigue strength and residual stiffness of woven roving GFRP under in-plane shear and compression cyclic loading. The specimens were tested at 45 degrees to the fiber direction in the cyclic tensile test, while the compression fatigue test was adjusted to prevent buckling. It is revealed that the in-plane fatigue limit corresponds to the principal strain of about <span><math><mrow><mn>3700</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></math></span>. The compression fatigue limit was 40% of the static compression strength. In-plane shear fatigue damage is predominantly due to matrix cracks, and the stiffness degradation appears in Region I, II, and III. The shear stiffness decreased by 20% before the fatigue failure. On the other hand, in the compression fatigue test, matrix cracks hardly occur, and delamination is dominant. The stiffness degradation of Region I is very limited in compression, and stiffness decreased about 10% before the fatigue failure. Moreover, theoretical models are proposed to express the residual stiffness, and they agree well with the experimental value.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"353 ","pages":"Article 118725"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stiffness degradation of woven roving GFRP due to shear and compression fatigue damage\",\"authors\":\"Akihiko Sato , Yasuo Kitane , Kunitomo Sugiura , Yoshinao Goi\",\"doi\":\"10.1016/j.compstruct.2024.118725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Woven roving GFRP is widely used in the structural members of GFRP bridges which are subject to compression or shear stress. However, it is not revealed well about fatigue strength and stiffness degradation under these loading conditions. This study aims to clarify the fatigue strength and residual stiffness of woven roving GFRP under in-plane shear and compression cyclic loading. The specimens were tested at 45 degrees to the fiber direction in the cyclic tensile test, while the compression fatigue test was adjusted to prevent buckling. It is revealed that the in-plane fatigue limit corresponds to the principal strain of about <span><math><mrow><mn>3700</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></math></span>. The compression fatigue limit was 40% of the static compression strength. In-plane shear fatigue damage is predominantly due to matrix cracks, and the stiffness degradation appears in Region I, II, and III. The shear stiffness decreased by 20% before the fatigue failure. On the other hand, in the compression fatigue test, matrix cracks hardly occur, and delamination is dominant. The stiffness degradation of Region I is very limited in compression, and stiffness decreased about 10% before the fatigue failure. Moreover, theoretical models are proposed to express the residual stiffness, and they agree well with the experimental value.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"353 \",\"pages\":\"Article 118725\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324008535\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324008535","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Stiffness degradation of woven roving GFRP due to shear and compression fatigue damage
Woven roving GFRP is widely used in the structural members of GFRP bridges which are subject to compression or shear stress. However, it is not revealed well about fatigue strength and stiffness degradation under these loading conditions. This study aims to clarify the fatigue strength and residual stiffness of woven roving GFRP under in-plane shear and compression cyclic loading. The specimens were tested at 45 degrees to the fiber direction in the cyclic tensile test, while the compression fatigue test was adjusted to prevent buckling. It is revealed that the in-plane fatigue limit corresponds to the principal strain of about . The compression fatigue limit was 40% of the static compression strength. In-plane shear fatigue damage is predominantly due to matrix cracks, and the stiffness degradation appears in Region I, II, and III. The shear stiffness decreased by 20% before the fatigue failure. On the other hand, in the compression fatigue test, matrix cracks hardly occur, and delamination is dominant. The stiffness degradation of Region I is very limited in compression, and stiffness decreased about 10% before the fatigue failure. Moreover, theoretical models are proposed to express the residual stiffness, and they agree well with the experimental value.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.