Dong-Hee Shin , Deok-Joong Lee , Ji-Wung Han, Young-Han Son, Tae-Eui Kam
{"title":"基于群体进化搜索的脑机接口超参数和架构联合优化技术","authors":"Dong-Hee Shin , Deok-Joong Lee , Ji-Wung Han, Young-Han Son, Tae-Eui Kam","doi":"10.1016/j.eswa.2024.125832","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, deep learning (DL)-based models have become the de facto standard for motor imagery brain-computer interface (MI-BCI) systems due to their notable performance. However, these models often require extensive hyperparameter optimization process to achieve optimal results. To tackle this challenge, recent studies have proposed various methods to automate this process. Despite promising results, these methods overlook the architecture elements, which are crucial factors for MI-BCI system performance and are highly intertwined with hyperparameter settings. To overcome this limitation, we propose a joint optimization framework that uses a population-based evolutionary search to optimize both hyperparameters and architectures. Our framework adopts a two-stage optimization approach that alternates between hyperparameter and architecture optimization to effectively manage the complexity of the joint search process. Furthermore, we introduce a novel ensemble method that leverages diverse promising configurations to enhance generalization and robustness. Evaluations on two public MI-BCI datasets show that our framework consistently outperforms competing methods across a range of backbone models, demonstrating its effectiveness and versatility.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"264 ","pages":"Article 125832"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Population-based evolutionary search for joint hyperparameter and architecture optimization in brain-computer interface\",\"authors\":\"Dong-Hee Shin , Deok-Joong Lee , Ji-Wung Han, Young-Han Son, Tae-Eui Kam\",\"doi\":\"10.1016/j.eswa.2024.125832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, deep learning (DL)-based models have become the de facto standard for motor imagery brain-computer interface (MI-BCI) systems due to their notable performance. However, these models often require extensive hyperparameter optimization process to achieve optimal results. To tackle this challenge, recent studies have proposed various methods to automate this process. Despite promising results, these methods overlook the architecture elements, which are crucial factors for MI-BCI system performance and are highly intertwined with hyperparameter settings. To overcome this limitation, we propose a joint optimization framework that uses a population-based evolutionary search to optimize both hyperparameters and architectures. Our framework adopts a two-stage optimization approach that alternates between hyperparameter and architecture optimization to effectively manage the complexity of the joint search process. Furthermore, we introduce a novel ensemble method that leverages diverse promising configurations to enhance generalization and robustness. Evaluations on two public MI-BCI datasets show that our framework consistently outperforms competing methods across a range of backbone models, demonstrating its effectiveness and versatility.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"264 \",\"pages\":\"Article 125832\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095741742402699X\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095741742402699X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Population-based evolutionary search for joint hyperparameter and architecture optimization in brain-computer interface
In recent years, deep learning (DL)-based models have become the de facto standard for motor imagery brain-computer interface (MI-BCI) systems due to their notable performance. However, these models often require extensive hyperparameter optimization process to achieve optimal results. To tackle this challenge, recent studies have proposed various methods to automate this process. Despite promising results, these methods overlook the architecture elements, which are crucial factors for MI-BCI system performance and are highly intertwined with hyperparameter settings. To overcome this limitation, we propose a joint optimization framework that uses a population-based evolutionary search to optimize both hyperparameters and architectures. Our framework adopts a two-stage optimization approach that alternates between hyperparameter and architecture optimization to effectively manage the complexity of the joint search process. Furthermore, we introduce a novel ensemble method that leverages diverse promising configurations to enhance generalization and robustness. Evaluations on two public MI-BCI datasets show that our framework consistently outperforms competing methods across a range of backbone models, demonstrating its effectiveness and versatility.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.