通过设计薄膜太阳能电池中的核壳结构介孔碳球反电极实现背界面工程

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-23 DOI:10.1016/j.jpowsour.2024.235877
Chang Xu, Yujie Gao, Tiansen Li, Jianing Guo, Mingxing Wu
{"title":"通过设计薄膜太阳能电池中的核壳结构介孔碳球反电极实现背界面工程","authors":"Chang Xu,&nbsp;Yujie Gao,&nbsp;Tiansen Li,&nbsp;Jianing Guo,&nbsp;Mingxing Wu","doi":"10.1016/j.jpowsour.2024.235877","DOIUrl":null,"url":null,"abstract":"<div><div>Exploration of economical and highly effective counter electrodes is crucial for both fundamental research into and the commercial application of dye-sensitized solar cells (DSCs) and perovskite solar cells (PSCs). Herein, a new type of core–shell structured mesoporous carbon spheres (Ag@MCSs) was meticulously designed and synthesized as a low-cost counter electrode to optimize back interface. The tailored mesoporous core–shell structure and metal nanoparticle core can optimize the energy level alignment and improve the conductivity of the counter electrode. These improvements facilitate charge carrier extraction and transport processes and inhibit recombination at the back interface of the counter electrode/perovskite. The hole transport layer–free PSCs using Ag@MCSs counter electrode obtains a power conversion efficiency (PCE) of 12.36 %, surpassing the parallel PSCs based on smooth surface carbon spheres (SSCSs) and micro/mesoporous carbon spheres (MMCSs) counter electrodes. Additionally, Ag@MCSs provide numerous catalytically active sites, smooth mass transfer channels, and improved conductivity, resulting in superior catalytic activity for iodide redox couple regeneration in DSCs, generating a high PCE of 8.25 %. This study is expected to offer a feasible pathway for exploring cheap counter electrodes and back interface engineering to accelerate mass and carrier transport processes in the back interface of PSCs and DSCs.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"628 ","pages":"Article 235877"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Back interface engineering by designing core–shell structured mesoporous carbon spheres counter electrode in thin–film solar cells\",\"authors\":\"Chang Xu,&nbsp;Yujie Gao,&nbsp;Tiansen Li,&nbsp;Jianing Guo,&nbsp;Mingxing Wu\",\"doi\":\"10.1016/j.jpowsour.2024.235877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Exploration of economical and highly effective counter electrodes is crucial for both fundamental research into and the commercial application of dye-sensitized solar cells (DSCs) and perovskite solar cells (PSCs). Herein, a new type of core–shell structured mesoporous carbon spheres (Ag@MCSs) was meticulously designed and synthesized as a low-cost counter electrode to optimize back interface. The tailored mesoporous core–shell structure and metal nanoparticle core can optimize the energy level alignment and improve the conductivity of the counter electrode. These improvements facilitate charge carrier extraction and transport processes and inhibit recombination at the back interface of the counter electrode/perovskite. The hole transport layer–free PSCs using Ag@MCSs counter electrode obtains a power conversion efficiency (PCE) of 12.36 %, surpassing the parallel PSCs based on smooth surface carbon spheres (SSCSs) and micro/mesoporous carbon spheres (MMCSs) counter electrodes. Additionally, Ag@MCSs provide numerous catalytically active sites, smooth mass transfer channels, and improved conductivity, resulting in superior catalytic activity for iodide redox couple regeneration in DSCs, generating a high PCE of 8.25 %. This study is expected to offer a feasible pathway for exploring cheap counter electrodes and back interface engineering to accelerate mass and carrier transport processes in the back interface of PSCs and DSCs.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"628 \",\"pages\":\"Article 235877\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324018299\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324018299","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

探索经济、高效的对电极对于染料敏化太阳能电池(DSC)和过氧化物太阳能电池(PSC)的基础研究和商业应用都至关重要。在此,我们精心设计并合成了一种新型核壳结构介孔碳球(Ag@MCSs),作为优化背面界面的低成本对电极。量身定制的介孔核壳结构和金属纳米粒子核心可以优化能级排列,提高对电极的电导率。这些改进促进了电荷载流子萃取和传输过程,并抑制了对电极/过氧化物背面界面的重组。使用 Ag@MCSs 对电极的无空穴传输层 PSCs 的功率转换效率(PCE)为 12.36%,超过了基于光滑表面碳球(SSCSs)和微/介孔碳球(MMCSs)对电极的平行 PSCs。此外,Ag@MCS 还提供了大量催化活性位点、顺畅的传质通道和更高的电导率,从而使 DSC 中碘氧化还原耦合再生具有更优越的催化活性,产生高达 8.25% 的 PCE。这项研究有望为探索廉价对电极和背界面工程提供一条可行的途径,从而加速 PSC 和 DSC 背界面的质量和载流子传输过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Back interface engineering by designing core–shell structured mesoporous carbon spheres counter electrode in thin–film solar cells
Exploration of economical and highly effective counter electrodes is crucial for both fundamental research into and the commercial application of dye-sensitized solar cells (DSCs) and perovskite solar cells (PSCs). Herein, a new type of core–shell structured mesoporous carbon spheres (Ag@MCSs) was meticulously designed and synthesized as a low-cost counter electrode to optimize back interface. The tailored mesoporous core–shell structure and metal nanoparticle core can optimize the energy level alignment and improve the conductivity of the counter electrode. These improvements facilitate charge carrier extraction and transport processes and inhibit recombination at the back interface of the counter electrode/perovskite. The hole transport layer–free PSCs using Ag@MCSs counter electrode obtains a power conversion efficiency (PCE) of 12.36 %, surpassing the parallel PSCs based on smooth surface carbon spheres (SSCSs) and micro/mesoporous carbon spheres (MMCSs) counter electrodes. Additionally, Ag@MCSs provide numerous catalytically active sites, smooth mass transfer channels, and improved conductivity, resulting in superior catalytic activity for iodide redox couple regeneration in DSCs, generating a high PCE of 8.25 %. This study is expected to offer a feasible pathway for exploring cheap counter electrodes and back interface engineering to accelerate mass and carrier transport processes in the back interface of PSCs and DSCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Comprehensive analysis of improved LiFePO4 kinetics: Understanding barriers to fast charging Systematic overview of equalization methods for battery energy storage systems Ab initio study on lithium anode interface instability and stabilization of superionic Li3InCl6 and Li6PS5Cl solid electrolytes Unravelling asynchronous oxidation of carbon and lithium carbonate during charging in lithium-carbon dioxide battery Investigating the role of Cu-doping and A-site deficiency in enhancing CO2 electrolysis performance of Ruddlesden-Popper structured fuel electrodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1