联盟学习中资源受限边缘设备的有效方法

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Intelligent Systems Pub Date : 2024-11-27 DOI:10.1155/2024/8860376
Jun Wen, Xiusheng Li, Yupeng Chen, Xiaoli Li, Hang Mao
{"title":"联盟学习中资源受限边缘设备的有效方法","authors":"Jun Wen,&nbsp;Xiusheng Li,&nbsp;Yupeng Chen,&nbsp;Xiaoli Li,&nbsp;Hang Mao","doi":"10.1155/2024/8860376","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Federated learning (FL) is a novel approach to privacy-preserving machine learning, enabling remote devices to collaborate on model training without exchanging data among clients. However, it faces several challenges, including limited client-side processing capabilities and non-IID data distributions. To address these challenges, we propose a partitioned FL architecture that a large CNN is divided into smaller networks, which train concurrently with other clients. Within a cluster, multiple clients concurrently train the ensemble model. The Jensen–Shannon divergence quantifies the similarity of predictions across submodels. To address discrepancies in model parameters between local and global models caused by data distribution, we propose an ensemble learning method that integrates a penalty term into the local model’s loss calculation, thereby ensuring synchronization. This method amalgamates predictions and losses across multiple submodels, effectively mitigating accuracy loss during the integration process. Extensive experiments with various Dirichlet parameters demonstrate that our system achieves accelerated convergence and enhanced performance on the CIFAR-10 and CIFAR-100 image classification tasks while remaining robust to partial participation, diverse datasets, and numerous clients. On the CIFAR-10 dataset, our method outperforms FedAvg, FedProx, and SplitFed by 6%–8%; in contrast, it outperforms them by 12%–18% on CIFAR-100.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8860376","citationCount":"0","resultStr":"{\"title\":\"An Effective Approach for Resource-Constrained Edge Devices in Federated Learning\",\"authors\":\"Jun Wen,&nbsp;Xiusheng Li,&nbsp;Yupeng Chen,&nbsp;Xiaoli Li,&nbsp;Hang Mao\",\"doi\":\"10.1155/2024/8860376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Federated learning (FL) is a novel approach to privacy-preserving machine learning, enabling remote devices to collaborate on model training without exchanging data among clients. However, it faces several challenges, including limited client-side processing capabilities and non-IID data distributions. To address these challenges, we propose a partitioned FL architecture that a large CNN is divided into smaller networks, which train concurrently with other clients. Within a cluster, multiple clients concurrently train the ensemble model. The Jensen–Shannon divergence quantifies the similarity of predictions across submodels. To address discrepancies in model parameters between local and global models caused by data distribution, we propose an ensemble learning method that integrates a penalty term into the local model’s loss calculation, thereby ensuring synchronization. This method amalgamates predictions and losses across multiple submodels, effectively mitigating accuracy loss during the integration process. Extensive experiments with various Dirichlet parameters demonstrate that our system achieves accelerated convergence and enhanced performance on the CIFAR-10 and CIFAR-100 image classification tasks while remaining robust to partial participation, diverse datasets, and numerous clients. On the CIFAR-10 dataset, our method outperforms FedAvg, FedProx, and SplitFed by 6%–8%; in contrast, it outperforms them by 12%–18% on CIFAR-100.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8860376\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/8860376\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8860376","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

联合学习(FL)是一种保护隐私的机器学习新方法,它使远程设备能够在不交换客户端数据的情况下协作进行模型训练。然而,它也面临着一些挑战,包括客户端处理能力有限和非 IID 数据分布。为了应对这些挑战,我们提出了一种分区 FL 架构,即将大型 CNN 分成较小的网络,这些网络与其他客户端同时进行训练。在一个集群内,多个客户端同时训练集合模型。詹森-香农分歧(Jensen-Shannon divergence)可量化子模型间预测的相似性。为了解决数据分布造成的局部模型和全局模型之间的模型参数差异,我们提出了一种集合学习方法,将惩罚项整合到局部模型的损失计算中,从而确保同步。这种方法综合了多个子模型的预测和损失,有效地减少了整合过程中的精度损失。使用各种 Dirichlet 参数进行的广泛实验表明,我们的系统在 CIFAR-10 和 CIFAR-100 图像分类任务中实现了加速收敛和增强性能,同时对部分参与、多样化数据集和众多客户端保持了鲁棒性。在 CIFAR-10 数据集上,我们的方法优于 FedAvg、FedProx 和 SplitFed 6%-8%;相比之下,在 CIFAR-100 数据集上,我们的方法优于它们 12%-18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Effective Approach for Resource-Constrained Edge Devices in Federated Learning

Federated learning (FL) is a novel approach to privacy-preserving machine learning, enabling remote devices to collaborate on model training without exchanging data among clients. However, it faces several challenges, including limited client-side processing capabilities and non-IID data distributions. To address these challenges, we propose a partitioned FL architecture that a large CNN is divided into smaller networks, which train concurrently with other clients. Within a cluster, multiple clients concurrently train the ensemble model. The Jensen–Shannon divergence quantifies the similarity of predictions across submodels. To address discrepancies in model parameters between local and global models caused by data distribution, we propose an ensemble learning method that integrates a penalty term into the local model’s loss calculation, thereby ensuring synchronization. This method amalgamates predictions and losses across multiple submodels, effectively mitigating accuracy loss during the integration process. Extensive experiments with various Dirichlet parameters demonstrate that our system achieves accelerated convergence and enhanced performance on the CIFAR-10 and CIFAR-100 image classification tasks while remaining robust to partial participation, diverse datasets, and numerous clients. On the CIFAR-10 dataset, our method outperforms FedAvg, FedProx, and SplitFed by 6%–8%; in contrast, it outperforms them by 12%–18% on CIFAR-100.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
期刊最新文献
A Graph Neural Network-Based Approach With Dynamic Multiqueue Optimization Scheduling (DMQOS) for Efficient Fault Tolerance and Load Balancing in Cloud Computing DocFuzz: A Directed Fuzzing Method Based on a Feedback Mechanism Mutator Two-View Image Semantic Cooperative Nonorthogonal Transmission in Distributed Edge Networks Reliable and Timely Short-Packet Communications in Joint Communication and Over-the-Air Computation Offloading Systems: Analysis and Optimization The Effect of User Behavior in Online Banking on Cybersecurity Knowledge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1