甲状腺乳头状微腺癌侧淋巴结转移相关组织蛋白的蛋白质组学分析

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Proteome Research Pub Date : 2024-11-27 DOI:10.1021/acs.jproteome.4c00737
Qiyao Zhang, Zhen Cao, Yuanyang Wang, Hao Wu, Zejian Zhang, Ziwen Liu
{"title":"甲状腺乳头状微腺癌侧淋巴结转移相关组织蛋白的蛋白质组学分析","authors":"Qiyao Zhang, Zhen Cao, Yuanyang Wang, Hao Wu, Zejian Zhang, Ziwen Liu","doi":"10.1021/acs.jproteome.4c00737","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with lateral lymph node metastasis (LLNM) may experience higher locoregional recurrence rates and poorer prognoses compared to those without LLNM, highlighting the need for effective preoperative stratification to reliably assess risk LLNM. In this study, we collected PTMC samples from Peking Union Medical College Hospital and employed data-independent acquisition mass spectrometry proteomics technique to identify protein profiles in PTMC tissues with and without LLNM. Pseudo temporal analysis and single sample gene set enrichment analysis were conducted in combination with The Cancer Genome Atlas Thyroid Carcinoma for functional coordination analysis and the construction of a prediction model based on random forest. Non-negative matrix factorization (NMF) clustering was utilized to classify molecular subtypes of PTMC. Our findings revealed that the differential activation of pathways such as MAPK and PI3K was critical in enhancing the lateral lymph node metastatic potential of PTMC. We successfully screened biomarkers via machine learning and public databases, creating an effective prediction model for metastasis. Additionally, we explored the mechanism of metastasis-associated PTMC subtypes via NMF clustering. These insights into LLNM mechanisms in PTMC may contribute to future biomarker screening and the identification of therapeutic targets.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteomic Analysis of Tissue Proteins Related to Lateral Lymph Node Metastasis in Papillary Thyroid Microcarcinoma.\",\"authors\":\"Qiyao Zhang, Zhen Cao, Yuanyang Wang, Hao Wu, Zejian Zhang, Ziwen Liu\",\"doi\":\"10.1021/acs.jproteome.4c00737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Patients with lateral lymph node metastasis (LLNM) may experience higher locoregional recurrence rates and poorer prognoses compared to those without LLNM, highlighting the need for effective preoperative stratification to reliably assess risk LLNM. In this study, we collected PTMC samples from Peking Union Medical College Hospital and employed data-independent acquisition mass spectrometry proteomics technique to identify protein profiles in PTMC tissues with and without LLNM. Pseudo temporal analysis and single sample gene set enrichment analysis were conducted in combination with The Cancer Genome Atlas Thyroid Carcinoma for functional coordination analysis and the construction of a prediction model based on random forest. Non-negative matrix factorization (NMF) clustering was utilized to classify molecular subtypes of PTMC. Our findings revealed that the differential activation of pathways such as MAPK and PI3K was critical in enhancing the lateral lymph node metastatic potential of PTMC. We successfully screened biomarkers via machine learning and public databases, creating an effective prediction model for metastasis. Additionally, we explored the mechanism of metastasis-associated PTMC subtypes via NMF clustering. These insights into LLNM mechanisms in PTMC may contribute to future biomarker screening and the identification of therapeutic targets.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.4c00737\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00737","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

与无侧淋巴结转移的患者相比,有侧淋巴结转移的患者局部复发率更高,预后更差,因此需要进行有效的术前分层,以可靠地评估侧淋巴结转移的风险。本研究收集了北京协和医院的 PTMC 组织样本,并采用数据独立获取质谱蛋白质组学技术鉴定了有 LLNM 和无 LLNM PTMC 组织的蛋白质谱。结合《癌症基因组图谱甲状腺癌》(The Cancer Genome Atlas Thyroid Carcinoma)进行伪时间分析和单样本基因组富集分析,进行功能协调分析,并构建了基于随机森林的预测模型。利用非负矩阵因式分解(NMF)聚类技术对PTMC进行分子亚型分类。我们的研究结果表明,MAPK和PI3K等通路的不同激活是增强PTMC侧淋巴结转移潜能的关键。我们通过机器学习和公共数据库成功筛选了生物标志物,建立了有效的转移预测模型。此外,我们还通过NMF聚类探索了与转移相关的PTMC亚型的机制。这些关于 PTMC 中 LLNM 机制的见解可能有助于未来生物标记物的筛选和治疗靶点的确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proteomic Analysis of Tissue Proteins Related to Lateral Lymph Node Metastasis in Papillary Thyroid Microcarcinoma.

Patients with lateral lymph node metastasis (LLNM) may experience higher locoregional recurrence rates and poorer prognoses compared to those without LLNM, highlighting the need for effective preoperative stratification to reliably assess risk LLNM. In this study, we collected PTMC samples from Peking Union Medical College Hospital and employed data-independent acquisition mass spectrometry proteomics technique to identify protein profiles in PTMC tissues with and without LLNM. Pseudo temporal analysis and single sample gene set enrichment analysis were conducted in combination with The Cancer Genome Atlas Thyroid Carcinoma for functional coordination analysis and the construction of a prediction model based on random forest. Non-negative matrix factorization (NMF) clustering was utilized to classify molecular subtypes of PTMC. Our findings revealed that the differential activation of pathways such as MAPK and PI3K was critical in enhancing the lateral lymph node metastatic potential of PTMC. We successfully screened biomarkers via machine learning and public databases, creating an effective prediction model for metastasis. Additionally, we explored the mechanism of metastasis-associated PTMC subtypes via NMF clustering. These insights into LLNM mechanisms in PTMC may contribute to future biomarker screening and the identification of therapeutic targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
期刊最新文献
Extracellular Vesicle-Driven Crosstalk between Legume Plants and Rhizobia: The Peribacteroid Space of Symbiosomes as a Protein Trafficking Interface. N-Terminal Proteomics Reveals Distinct Protein Degradation Patterns in Different Types of Human Atherosclerotic Plaques. Proteome-Wide Analysis of Antibody Responses in Asymptomatic Omicron BA.2-Infected Individuals at the Amino Acid Resolution. Proteomic Insights into the Regulatory Role of CobQ Deacetylase in Aeromonas hydrophila. Intact Mass Proteomics Using a Proteoform Atlas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1