Chunyi Li, Wenying Wang, Guokun Zhang, Hengxing Ba, He Liu, Jincheng Wang, Wei Li, Gerry Melino, Yufang Shi
{"title":"与年度鹿茸再生有关的骨代谢:鹿对骨质疏松症逆转的见解。","authors":"Chunyi Li, Wenying Wang, Guokun Zhang, Hengxing Ba, He Liu, Jincheng Wang, Wei Li, Gerry Melino, Yufang Shi","doi":"10.1186/s13062-024-00561-3","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoporosis, a metabolic disorder, remains challenging to treat due to limited understanding of its underlying mechanism. The annual cycle of \"cyclic physiological osteoporosis (CPO)\" and its full reversal in male deer represents a unique natural model for studying this condition. Deer antlers, weighing up to 25 kg/pair, derive over 60% of their mineral contents from deer skeleton during mineralization. Based on the literature, we propose to divide CPO and its reversal into two phases: Phase I (approximately 115 days): from hard antler casting to the end of antler linear growth, marked by simultaneous robust antler ossification and CPO development; and Phase II (up to 165 days): from end of Phase I to the onset of antler skin shedding, characterized by complete antler mineralization and CPO reversal. This review analyzes the paradoxical occurrence of robust antler ossification and skeleton CPO within the same endocrine microenvironment during phase I; total antler mineralization and full reversal of deer skeleton CPO in phase II. Furthermore, we will discuss potential insights for osteoporosis treatment using deer materials from the period of Phase II. Our goal is to identify novel substances and therapies that could be applied in clinical setting to effectively treat osteoporosis.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"123"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bone metabolism associated with annual antler regeneration: a deer insight into osteoporosis reversal.\",\"authors\":\"Chunyi Li, Wenying Wang, Guokun Zhang, Hengxing Ba, He Liu, Jincheng Wang, Wei Li, Gerry Melino, Yufang Shi\",\"doi\":\"10.1186/s13062-024-00561-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoporosis, a metabolic disorder, remains challenging to treat due to limited understanding of its underlying mechanism. The annual cycle of \\\"cyclic physiological osteoporosis (CPO)\\\" and its full reversal in male deer represents a unique natural model for studying this condition. Deer antlers, weighing up to 25 kg/pair, derive over 60% of their mineral contents from deer skeleton during mineralization. Based on the literature, we propose to divide CPO and its reversal into two phases: Phase I (approximately 115 days): from hard antler casting to the end of antler linear growth, marked by simultaneous robust antler ossification and CPO development; and Phase II (up to 165 days): from end of Phase I to the onset of antler skin shedding, characterized by complete antler mineralization and CPO reversal. This review analyzes the paradoxical occurrence of robust antler ossification and skeleton CPO within the same endocrine microenvironment during phase I; total antler mineralization and full reversal of deer skeleton CPO in phase II. Furthermore, we will discuss potential insights for osteoporosis treatment using deer materials from the period of Phase II. Our goal is to identify novel substances and therapies that could be applied in clinical setting to effectively treat osteoporosis.</p>\",\"PeriodicalId\":9164,\"journal\":{\"name\":\"Biology Direct\",\"volume\":\"19 1\",\"pages\":\"123\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13062-024-00561-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-024-00561-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Bone metabolism associated with annual antler regeneration: a deer insight into osteoporosis reversal.
Osteoporosis, a metabolic disorder, remains challenging to treat due to limited understanding of its underlying mechanism. The annual cycle of "cyclic physiological osteoporosis (CPO)" and its full reversal in male deer represents a unique natural model for studying this condition. Deer antlers, weighing up to 25 kg/pair, derive over 60% of their mineral contents from deer skeleton during mineralization. Based on the literature, we propose to divide CPO and its reversal into two phases: Phase I (approximately 115 days): from hard antler casting to the end of antler linear growth, marked by simultaneous robust antler ossification and CPO development; and Phase II (up to 165 days): from end of Phase I to the onset of antler skin shedding, characterized by complete antler mineralization and CPO reversal. This review analyzes the paradoxical occurrence of robust antler ossification and skeleton CPO within the same endocrine microenvironment during phase I; total antler mineralization and full reversal of deer skeleton CPO in phase II. Furthermore, we will discuss potential insights for osteoporosis treatment using deer materials from the period of Phase II. Our goal is to identify novel substances and therapies that could be applied in clinical setting to effectively treat osteoporosis.
期刊介绍:
Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.