Arkady Uryash, Alfredo Mijares, Jose A Adams, Jose R Lopez
{"title":"恶性高热惊厥易感小鼠海马神经元细胞内 Ca2+ 升高引起的葡萄糖摄取障碍","authors":"Arkady Uryash, Alfredo Mijares, Jose A Adams, Jose R Lopez","doi":"10.3390/cells13221888","DOIUrl":null,"url":null,"abstract":"<p><p>Malignant hyperthermia (MH) is a genetic disorder triggered by depolarizing muscle relaxants or halogenated inhalational anesthetics in genetically predisposed individuals who have a chronic elevated intracellular Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>i</sub>) in their muscle cells. We have reported that the muscle dysregulation of [Ca<sup>2+</sup>]<sub>i</sub> impairs glucose uptake, leading to the development of insulin resistance in two rodent experimental models. In this study, we simultaneously measured the [Ca<sup>2+</sup>]<sub>i</sub> and glucose uptake in single enzymatically isolated hippocampal pyramidal neurons from wild-type (WT) and MH-R163C mice. The [Ca<sup>2+</sup>]<sub>i</sub> was recorded using a Ca<sup>2+</sup>-selective microelectrode, and the glucose uptake was assessed utilizing the fluorescent glucose analog 2-NBDG. The MH-R163C hippocampal neurons exhibited elevated [Ca<sup>2+</sup>]<sub>i</sub> and impaired insulin-dependent glucose uptake compared with the WT neurons. Additionally, exposure to isoflurane exacerbated these deficiencies in the MH-R163C neurons, while the WT neurons remained unaffected. Lowering [Ca<sup>2+</sup>]<sub>i</sub> using a Ca<sup>2+</sup>-free solution, SAR7334, or dantrolene increased the glucose uptake in the MH-R163C neurons without significantly affecting the WT neurons. However, further reduction of the [Ca<sup>2+</sup>]<sub>i</sub> below the physiological level using BAPTA decreased the insulin-dependent glucose uptake in both genotypes. Furthermore, the homogenates of the MH-R163C hippocampal neurons showed an altered protein expression of the PI3K/Akt signaling pathway and GLUT4 compared with the WT mice. Our study demonstrated that the chronic elevation of [Ca<sup>2+</sup>]<sub>i</sub> was sufficient to compromise the insulin-dependent glucose uptake in the MH-R163C hippocampal neurons. Moreover, reducing the [Ca<sup>2+</sup>]<sub>i</sub> within a specific range (100-130 nM) could reverse insulin resistance, a hallmark of type 2 diabetes mellitus (T2D).</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"13 22","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impairment of Glucose Uptake Induced by Elevated Intracellular Ca<sup>2+</sup> in Hippocampal Neurons of Malignant Hyperthermia-Susceptible Mice.\",\"authors\":\"Arkady Uryash, Alfredo Mijares, Jose A Adams, Jose R Lopez\",\"doi\":\"10.3390/cells13221888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Malignant hyperthermia (MH) is a genetic disorder triggered by depolarizing muscle relaxants or halogenated inhalational anesthetics in genetically predisposed individuals who have a chronic elevated intracellular Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>i</sub>) in their muscle cells. We have reported that the muscle dysregulation of [Ca<sup>2+</sup>]<sub>i</sub> impairs glucose uptake, leading to the development of insulin resistance in two rodent experimental models. In this study, we simultaneously measured the [Ca<sup>2+</sup>]<sub>i</sub> and glucose uptake in single enzymatically isolated hippocampal pyramidal neurons from wild-type (WT) and MH-R163C mice. The [Ca<sup>2+</sup>]<sub>i</sub> was recorded using a Ca<sup>2+</sup>-selective microelectrode, and the glucose uptake was assessed utilizing the fluorescent glucose analog 2-NBDG. The MH-R163C hippocampal neurons exhibited elevated [Ca<sup>2+</sup>]<sub>i</sub> and impaired insulin-dependent glucose uptake compared with the WT neurons. Additionally, exposure to isoflurane exacerbated these deficiencies in the MH-R163C neurons, while the WT neurons remained unaffected. Lowering [Ca<sup>2+</sup>]<sub>i</sub> using a Ca<sup>2+</sup>-free solution, SAR7334, or dantrolene increased the glucose uptake in the MH-R163C neurons without significantly affecting the WT neurons. However, further reduction of the [Ca<sup>2+</sup>]<sub>i</sub> below the physiological level using BAPTA decreased the insulin-dependent glucose uptake in both genotypes. Furthermore, the homogenates of the MH-R163C hippocampal neurons showed an altered protein expression of the PI3K/Akt signaling pathway and GLUT4 compared with the WT mice. Our study demonstrated that the chronic elevation of [Ca<sup>2+</sup>]<sub>i</sub> was sufficient to compromise the insulin-dependent glucose uptake in the MH-R163C hippocampal neurons. Moreover, reducing the [Ca<sup>2+</sup>]<sub>i</sub> within a specific range (100-130 nM) could reverse insulin resistance, a hallmark of type 2 diabetes mellitus (T2D).</p>\",\"PeriodicalId\":9743,\"journal\":{\"name\":\"Cells\",\"volume\":\"13 22\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cells13221888\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells13221888","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Impairment of Glucose Uptake Induced by Elevated Intracellular Ca2+ in Hippocampal Neurons of Malignant Hyperthermia-Susceptible Mice.
Malignant hyperthermia (MH) is a genetic disorder triggered by depolarizing muscle relaxants or halogenated inhalational anesthetics in genetically predisposed individuals who have a chronic elevated intracellular Ca2+ concentration ([Ca2+]i) in their muscle cells. We have reported that the muscle dysregulation of [Ca2+]i impairs glucose uptake, leading to the development of insulin resistance in two rodent experimental models. In this study, we simultaneously measured the [Ca2+]i and glucose uptake in single enzymatically isolated hippocampal pyramidal neurons from wild-type (WT) and MH-R163C mice. The [Ca2+]i was recorded using a Ca2+-selective microelectrode, and the glucose uptake was assessed utilizing the fluorescent glucose analog 2-NBDG. The MH-R163C hippocampal neurons exhibited elevated [Ca2+]i and impaired insulin-dependent glucose uptake compared with the WT neurons. Additionally, exposure to isoflurane exacerbated these deficiencies in the MH-R163C neurons, while the WT neurons remained unaffected. Lowering [Ca2+]i using a Ca2+-free solution, SAR7334, or dantrolene increased the glucose uptake in the MH-R163C neurons without significantly affecting the WT neurons. However, further reduction of the [Ca2+]i below the physiological level using BAPTA decreased the insulin-dependent glucose uptake in both genotypes. Furthermore, the homogenates of the MH-R163C hippocampal neurons showed an altered protein expression of the PI3K/Akt signaling pathway and GLUT4 compared with the WT mice. Our study demonstrated that the chronic elevation of [Ca2+]i was sufficient to compromise the insulin-dependent glucose uptake in the MH-R163C hippocampal neurons. Moreover, reducing the [Ca2+]i within a specific range (100-130 nM) could reverse insulin resistance, a hallmark of type 2 diabetes mellitus (T2D).
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.