Polina Tsygankova, Denis Chistol, Tatiana Krylova, Igor Bychkov, Vyacheslav Tabakov, Tatiana Markova, Elena Dadali, Ekaterina Zakharova
{"title":"线粒体 RNA 螺旋酶 SUPV3L1 相关神经退行性疾病的新病例:共济失调、痉挛、视神经萎缩和皮肤色素沉着(ASOASH)。","authors":"Polina Tsygankova, Denis Chistol, Tatiana Krylova, Igor Bychkov, Vyacheslav Tabakov, Tatiana Markova, Elena Dadali, Ekaterina Zakharova","doi":"10.3390/genes15111406","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The <i>SUPV3L1</i> gene encodes ATP-dependent RNA helicase SUPV3L1, which is a part of the mitochondrial degradosome complex or SUV3. SUPV3L1 unwinds secondary structures of mitochondrial RNA (mtRNA) and facilitates the degradation of mtRNA molecules. A nonsense homozygous variant in the <i>SUPV3L1</i> gene was recently associated with mitochondrial disease. Our study presents the second documented case of <i>SUPV3L1</i> pathology in humans.</p><p><strong>Methods: </strong>Whole-genome sequencing was performed on the NovaSeq 6000 platform using pair-end reading. Data analysis was performed with an in-house developed pipeline.</p><p><strong>Results: </strong>The 17-year-old female patient exhibited a diverse array of symptoms, including ataxia, spastic paraparesis, cognitive deficit, optic atrophy, and horizontal gaze-evoked nystagmus. Early onset of symptoms, such as ataxic gait and nystagmus, was noted, with subsequent progression of neurological manifestations. At the time of the observation, the proband had extensive regions of hypopigmented skin patches on the body and extremities, which have progressed over time. Whole-genome sequencing revealed compound heterozygous variants in the <i>SUPV3L1</i> gene: c.272-2A>G and c.1924A>C; p.(Ser642Arg). RNA analysis demonstrated splicing changes attributable to the c.272-2A>G variant. ELISA assay showed increased Complex I content in the patient's fibroblasts. This case underscores the phenotypic diversity associated with <i>SUPV3L1</i> mutations, emphasizing the importance of considering mitochondrial RNA helicase dysfunction in the differential diagnosis of neurodegenerative disorders. Further elucidation of the molecular mechanisms underlying SUPV3L1-associated pathology may provide valuable insights into targeted therapeutic interventions.</p>","PeriodicalId":12688,"journal":{"name":"Genes","volume":"15 11","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593967/pdf/","citationCount":"0","resultStr":"{\"title\":\"A New Case of Mitochondrial RNA Helicase SUPV3L1-Associated Neurodegenerative Disease: Ataxia, Spasticity, Optic Atrophy, and Skin Hypopigmentation (ASOASH).\",\"authors\":\"Polina Tsygankova, Denis Chistol, Tatiana Krylova, Igor Bychkov, Vyacheslav Tabakov, Tatiana Markova, Elena Dadali, Ekaterina Zakharova\",\"doi\":\"10.3390/genes15111406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The <i>SUPV3L1</i> gene encodes ATP-dependent RNA helicase SUPV3L1, which is a part of the mitochondrial degradosome complex or SUV3. SUPV3L1 unwinds secondary structures of mitochondrial RNA (mtRNA) and facilitates the degradation of mtRNA molecules. A nonsense homozygous variant in the <i>SUPV3L1</i> gene was recently associated with mitochondrial disease. Our study presents the second documented case of <i>SUPV3L1</i> pathology in humans.</p><p><strong>Methods: </strong>Whole-genome sequencing was performed on the NovaSeq 6000 platform using pair-end reading. Data analysis was performed with an in-house developed pipeline.</p><p><strong>Results: </strong>The 17-year-old female patient exhibited a diverse array of symptoms, including ataxia, spastic paraparesis, cognitive deficit, optic atrophy, and horizontal gaze-evoked nystagmus. Early onset of symptoms, such as ataxic gait and nystagmus, was noted, with subsequent progression of neurological manifestations. At the time of the observation, the proband had extensive regions of hypopigmented skin patches on the body and extremities, which have progressed over time. Whole-genome sequencing revealed compound heterozygous variants in the <i>SUPV3L1</i> gene: c.272-2A>G and c.1924A>C; p.(Ser642Arg). RNA analysis demonstrated splicing changes attributable to the c.272-2A>G variant. ELISA assay showed increased Complex I content in the patient's fibroblasts. This case underscores the phenotypic diversity associated with <i>SUPV3L1</i> mutations, emphasizing the importance of considering mitochondrial RNA helicase dysfunction in the differential diagnosis of neurodegenerative disorders. Further elucidation of the molecular mechanisms underlying SUPV3L1-associated pathology may provide valuable insights into targeted therapeutic interventions.</p>\",\"PeriodicalId\":12688,\"journal\":{\"name\":\"Genes\",\"volume\":\"15 11\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593967/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/genes15111406\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/genes15111406","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A New Case of Mitochondrial RNA Helicase SUPV3L1-Associated Neurodegenerative Disease: Ataxia, Spasticity, Optic Atrophy, and Skin Hypopigmentation (ASOASH).
Background: The SUPV3L1 gene encodes ATP-dependent RNA helicase SUPV3L1, which is a part of the mitochondrial degradosome complex or SUV3. SUPV3L1 unwinds secondary structures of mitochondrial RNA (mtRNA) and facilitates the degradation of mtRNA molecules. A nonsense homozygous variant in the SUPV3L1 gene was recently associated with mitochondrial disease. Our study presents the second documented case of SUPV3L1 pathology in humans.
Methods: Whole-genome sequencing was performed on the NovaSeq 6000 platform using pair-end reading. Data analysis was performed with an in-house developed pipeline.
Results: The 17-year-old female patient exhibited a diverse array of symptoms, including ataxia, spastic paraparesis, cognitive deficit, optic atrophy, and horizontal gaze-evoked nystagmus. Early onset of symptoms, such as ataxic gait and nystagmus, was noted, with subsequent progression of neurological manifestations. At the time of the observation, the proband had extensive regions of hypopigmented skin patches on the body and extremities, which have progressed over time. Whole-genome sequencing revealed compound heterozygous variants in the SUPV3L1 gene: c.272-2A>G and c.1924A>C; p.(Ser642Arg). RNA analysis demonstrated splicing changes attributable to the c.272-2A>G variant. ELISA assay showed increased Complex I content in the patient's fibroblasts. This case underscores the phenotypic diversity associated with SUPV3L1 mutations, emphasizing the importance of considering mitochondrial RNA helicase dysfunction in the differential diagnosis of neurodegenerative disorders. Further elucidation of the molecular mechanisms underlying SUPV3L1-associated pathology may provide valuable insights into targeted therapeutic interventions.
期刊介绍:
Genes (ISSN 2073-4425) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to genes, genetics and genomics. It publishes reviews, research articles, communications and technical notes. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.