评估暴露组干预对阿尔茨海默病的影响和成本效益:基于代理的建模及其他因果推断数据科学方法综述》(A Review of Agent-Based Modeling and Other Data Science Methods for Causal Inference)。

IF 2.8 3区 生物学 Q2 GENETICS & HEREDITY Genes Pub Date : 2024-11-12 DOI:10.3390/genes15111457
Shelley H Liu, Ellerie S Weber, Katherine E Manz, Katharine J McCarthy, Yitong Chen, Peter J Schüffler, Carolyn W Zhu, Melissa Tracy
{"title":"评估暴露组干预对阿尔茨海默病的影响和成本效益:基于代理的建模及其他因果推断数据科学方法综述》(A Review of Agent-Based Modeling and Other Data Science Methods for Causal Inference)。","authors":"Shelley H Liu, Ellerie S Weber, Katherine E Manz, Katharine J McCarthy, Yitong Chen, Peter J Schüffler, Carolyn W Zhu, Melissa Tracy","doi":"10.3390/genes15111457","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> The exposome (e.g., totality of environmental exposures) and its role in Alzheimer's Disease and Alzheimer's Disease and Related Dementias (AD/ADRD) are increasingly critical areas of study. However, little is known about how interventions on the exposome, including personal behavioral modification or policy-level interventions, may impact AD/ADRD disease burden at the population level in real-world settings and the cost-effectiveness of interventions. <b>Methods:</b> We performed a critical review to discuss the challenges in modeling exposome interventions on population-level AD/ADRD burden and the potential of using agent-based modeling (ABM) and other advanced data science methods for causal inference to achieve this. <b>Results:</b> We describe how ABM can be used for empirical causal inference modeling and provide a virtual laboratory for simulating the impacts of personal and policy-level interventions. These hypothetical experiments can provide insight into the optimal timing, targeting, and duration of interventions, identifying optimal combinations of interventions, and can be augmented with economic analyses to evaluate the cost-effectiveness of interventions. We also discuss other data science methods, including structural equation modeling and Mendelian randomization. Lastly, we discuss challenges in modeling the complex exposome, including high dimensional and sparse data, the need to account for dynamic changes over time and over the life course, and the role of exposome burden scores developed using item response theory models and artificial intelligence to address these challenges. <b>Conclusions:</b> This critical review highlights opportunities and challenges in modeling exposome interventions on population-level AD/ADRD disease burden while considering the cost-effectiveness of different interventions, which can be used to aid data-driven policy decisions.</p>","PeriodicalId":12688,"journal":{"name":"Genes","volume":"15 11","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593565/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing the Impact and Cost-Effectiveness of Exposome Interventions on Alzheimer's Disease: A Review of Agent-Based Modeling and Other Data Science Methods for Causal Inference.\",\"authors\":\"Shelley H Liu, Ellerie S Weber, Katherine E Manz, Katharine J McCarthy, Yitong Chen, Peter J Schüffler, Carolyn W Zhu, Melissa Tracy\",\"doi\":\"10.3390/genes15111457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> The exposome (e.g., totality of environmental exposures) and its role in Alzheimer's Disease and Alzheimer's Disease and Related Dementias (AD/ADRD) are increasingly critical areas of study. However, little is known about how interventions on the exposome, including personal behavioral modification or policy-level interventions, may impact AD/ADRD disease burden at the population level in real-world settings and the cost-effectiveness of interventions. <b>Methods:</b> We performed a critical review to discuss the challenges in modeling exposome interventions on population-level AD/ADRD burden and the potential of using agent-based modeling (ABM) and other advanced data science methods for causal inference to achieve this. <b>Results:</b> We describe how ABM can be used for empirical causal inference modeling and provide a virtual laboratory for simulating the impacts of personal and policy-level interventions. These hypothetical experiments can provide insight into the optimal timing, targeting, and duration of interventions, identifying optimal combinations of interventions, and can be augmented with economic analyses to evaluate the cost-effectiveness of interventions. We also discuss other data science methods, including structural equation modeling and Mendelian randomization. Lastly, we discuss challenges in modeling the complex exposome, including high dimensional and sparse data, the need to account for dynamic changes over time and over the life course, and the role of exposome burden scores developed using item response theory models and artificial intelligence to address these challenges. <b>Conclusions:</b> This critical review highlights opportunities and challenges in modeling exposome interventions on population-level AD/ADRD disease burden while considering the cost-effectiveness of different interventions, which can be used to aid data-driven policy decisions.</p>\",\"PeriodicalId\":12688,\"journal\":{\"name\":\"Genes\",\"volume\":\"15 11\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11593565/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/genes15111457\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/genes15111457","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:暴露体(如环境暴露的整体)及其在阿尔茨海默病和阿尔茨海默病及相关痴呆症(AD/ADRD)中的作用日益成为研究的关键领域。然而,人们对暴露组的干预措施(包括个人行为改变或政策层面的干预措施)在实际环境中如何影响人群水平上的阿兹海默病/阿兹海默病相关痴呆症疾病负担以及干预措施的成本效益知之甚少。方法:我们进行了一项批判性综述,讨论了暴露组干预对人群水平的 AD/ADRD 负担建模所面临的挑战,以及使用基于代理的建模(ABM)和其他先进的数据科学方法进行因果推断以实现这一目标的潜力。结果:我们介绍了如何利用 ABM 进行经验性因果推断建模,并提供了一个虚拟实验室来模拟个人和政策层面干预措施的影响。这些假设实验可以让我们深入了解干预措施的最佳时机、目标和持续时间,确定干预措施的最佳组合,并可通过经济分析来评估干预措施的成本效益。我们还讨论了其他数据科学方法,包括结构方程建模和孟德尔随机化。最后,我们讨论了复杂暴露组建模所面临的挑战,包括高维和稀疏数据、考虑随时间和生命过程发生动态变化的必要性,以及利用项目反应理论模型和人工智能开发的暴露组负担评分在应对这些挑战方面的作用。结论:这篇重要综述强调了暴露组干预人群AD/ADRD疾病负担建模的机遇与挑战,同时考虑了不同干预措施的成本效益,可用于辅助数据驱动的政策决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing the Impact and Cost-Effectiveness of Exposome Interventions on Alzheimer's Disease: A Review of Agent-Based Modeling and Other Data Science Methods for Causal Inference.

Background: The exposome (e.g., totality of environmental exposures) and its role in Alzheimer's Disease and Alzheimer's Disease and Related Dementias (AD/ADRD) are increasingly critical areas of study. However, little is known about how interventions on the exposome, including personal behavioral modification or policy-level interventions, may impact AD/ADRD disease burden at the population level in real-world settings and the cost-effectiveness of interventions. Methods: We performed a critical review to discuss the challenges in modeling exposome interventions on population-level AD/ADRD burden and the potential of using agent-based modeling (ABM) and other advanced data science methods for causal inference to achieve this. Results: We describe how ABM can be used for empirical causal inference modeling and provide a virtual laboratory for simulating the impacts of personal and policy-level interventions. These hypothetical experiments can provide insight into the optimal timing, targeting, and duration of interventions, identifying optimal combinations of interventions, and can be augmented with economic analyses to evaluate the cost-effectiveness of interventions. We also discuss other data science methods, including structural equation modeling and Mendelian randomization. Lastly, we discuss challenges in modeling the complex exposome, including high dimensional and sparse data, the need to account for dynamic changes over time and over the life course, and the role of exposome burden scores developed using item response theory models and artificial intelligence to address these challenges. Conclusions: This critical review highlights opportunities and challenges in modeling exposome interventions on population-level AD/ADRD disease burden while considering the cost-effectiveness of different interventions, which can be used to aid data-driven policy decisions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes
Genes GENETICS & HEREDITY-
CiteScore
5.20
自引率
5.70%
发文量
1975
审稿时长
22.94 days
期刊介绍: Genes (ISSN 2073-4425) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to genes, genetics and genomics. It publishes reviews, research articles, communications and technical notes. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.
期刊最新文献
Characterization and Phylogenetic Analysis of the First Complete Chloroplast Genome of Shizhenia pinguicula (Orchidaceae: Orchideae). An Updated Analysis of Exon-Skipping Applicability for Duchenne Muscular Dystrophy Using the UMD-DMD Database. Application of CRISPR/Cas9 Technology in Rice Germplasm Innovation and Genetic Improvement. MIR27A rs895819 CC Genotype Severely Reduces miR-27a Plasma Expression Levels. Multiple Osteochondritis Dissecans as Main Manifestation of Multiple Epiphyseal Dysplasia Caused by a Novel Cartilage Oligomeric Matrix Protein Pathogenic Variant: A Clinical Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1