基于宽带光学测量的机器学习皮肤光型分类。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-11-20 DOI:10.3390/s24227397
Xun Yu, Keat Ghee Ong, Michael Aaron McGeehan
{"title":"基于宽带光学测量的机器学习皮肤光型分类。","authors":"Xun Yu, Keat Ghee Ong, Michael Aaron McGeehan","doi":"10.3390/s24227397","DOIUrl":null,"url":null,"abstract":"<p><p>The Fitzpatrick Skin Phototype Classification (FSPC) scale is widely used to categorize skin types but has limitations such as the underrepresentation of darker skin phototypes, low classification resolution, and subjectivity. These limitations may contribute to dermatological care disparities in patients with darker skin phototypes, including the misdiagnosis of wound healing progression and escalated dermatological disease severity. This study introduces (1) an optical sensor measuring reflected light across 410-940 nm, (2) an unsupervised K-means algorithm for skin phototype classification using broadband optical data, and (3) methods to optimize classification across the Near-ultraviolet-A, Visible, and Near-infrared spectra. The differentiation capability of the algorithm was compared to human assessment based on FSPC in a diverse participant population (<i>n</i> = 30) spanning an even distribution of the full FSPC scale. The FSPC assessment distinguished between light and dark skin phototypes (e.g., FSPC I vs. VI) at 560, 585, and 645 nm but struggled with more similar phototypes (e.g., I vs. II). The K-means algorithm demonstrated stronger differentiation across a broader range of wavelengths, resulting in better classification resolution and supporting its use as a quantifiable and reproducible method for skin type classification. We also demonstrate the optimization of this method for specific bandwidths of interest and their associated clinical implications.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 22","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skin Phototype Classification with Machine Learning Based on Broadband Optical Measurements.\",\"authors\":\"Xun Yu, Keat Ghee Ong, Michael Aaron McGeehan\",\"doi\":\"10.3390/s24227397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Fitzpatrick Skin Phototype Classification (FSPC) scale is widely used to categorize skin types but has limitations such as the underrepresentation of darker skin phototypes, low classification resolution, and subjectivity. These limitations may contribute to dermatological care disparities in patients with darker skin phototypes, including the misdiagnosis of wound healing progression and escalated dermatological disease severity. This study introduces (1) an optical sensor measuring reflected light across 410-940 nm, (2) an unsupervised K-means algorithm for skin phototype classification using broadband optical data, and (3) methods to optimize classification across the Near-ultraviolet-A, Visible, and Near-infrared spectra. The differentiation capability of the algorithm was compared to human assessment based on FSPC in a diverse participant population (<i>n</i> = 30) spanning an even distribution of the full FSPC scale. The FSPC assessment distinguished between light and dark skin phototypes (e.g., FSPC I vs. VI) at 560, 585, and 645 nm but struggled with more similar phototypes (e.g., I vs. II). The K-means algorithm demonstrated stronger differentiation across a broader range of wavelengths, resulting in better classification resolution and supporting its use as a quantifiable and reproducible method for skin type classification. We also demonstrate the optimization of this method for specific bandwidths of interest and their associated clinical implications.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 22\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24227397\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24227397","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

菲茨帕特里克皮肤光型分类(FSPC)量表被广泛用于皮肤类型的分类,但它也存在一些局限性,如对深色皮肤光型的代表性不足、分类分辨率低和主观性强。这些局限性可能会导致深色皮肤光型患者在皮肤病护理方面的差异,包括伤口愈合进展的误诊和皮肤病严重程度的增加。本研究介绍了:(1)测量 410-940 纳米反射光的光学传感器;(2)使用宽带光学数据进行皮肤光型分类的无监督 K-means 算法;(3)优化近紫外-A、可见光和近红外光谱分类的方法。该算法的分辨能力与基于 FSPC 的人类评估进行了比较,受试者来自不同的人群(n = 30),在整个 FSPC 等级中分布均匀。在 560、585 和 645 纳米波长下,FSPC 评估可区分浅色和深色皮肤光型(如 FSPC I 与 VI),但在更相似的皮肤光型(如 I 与 II)上则难以区分。K-means 算法在更广泛的波长范围内表现出更强的区分度,从而提高了分类分辨率,并支持将其作为一种可量化、可重复的皮肤类型分类方法。我们还展示了该方法对特定感兴趣带宽的优化及其相关临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Skin Phototype Classification with Machine Learning Based on Broadband Optical Measurements.

The Fitzpatrick Skin Phototype Classification (FSPC) scale is widely used to categorize skin types but has limitations such as the underrepresentation of darker skin phototypes, low classification resolution, and subjectivity. These limitations may contribute to dermatological care disparities in patients with darker skin phototypes, including the misdiagnosis of wound healing progression and escalated dermatological disease severity. This study introduces (1) an optical sensor measuring reflected light across 410-940 nm, (2) an unsupervised K-means algorithm for skin phototype classification using broadband optical data, and (3) methods to optimize classification across the Near-ultraviolet-A, Visible, and Near-infrared spectra. The differentiation capability of the algorithm was compared to human assessment based on FSPC in a diverse participant population (n = 30) spanning an even distribution of the full FSPC scale. The FSPC assessment distinguished between light and dark skin phototypes (e.g., FSPC I vs. VI) at 560, 585, and 645 nm but struggled with more similar phototypes (e.g., I vs. II). The K-means algorithm demonstrated stronger differentiation across a broader range of wavelengths, resulting in better classification resolution and supporting its use as a quantifiable and reproducible method for skin type classification. We also demonstrate the optimization of this method for specific bandwidths of interest and their associated clinical implications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Privacy-Preserving Synthetic Data Generation Method for IoT-Sensor Network IDS Using CTGAN. Energy Efficiency for 5G and Beyond 5G: Potential, Limitations, and Future Directions. Enhanced Fault Detection in Photovoltaic Panels Using CNN-Based Classification with PyQt5 Implementation. Adaptive Kernel Convolutional Stereo Matching Recurrent Network. Enhancing Direction-of-Arrival Estimation with Multi-Task Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1