miR-574-5p 在表观遗传调控和 Toll 样受体信号转导中的作用。

IF 8.2 2区 生物学 Q1 CELL BIOLOGY Cell Communication and Signaling Pub Date : 2024-11-26 DOI:10.1186/s12964-024-01934-x
James Y Yang
{"title":"miR-574-5p 在表观遗传调控和 Toll 样受体信号转导中的作用。","authors":"James Y Yang","doi":"10.1186/s12964-024-01934-x","DOIUrl":null,"url":null,"abstract":"<p><p>miR-574-5p is an unusual microRNA (miRNA) that is often upregulated or downregulated following exposure to irradiation or toxic chemicals; bacterial, parasitic or viral infection; and a variety of other disease conditions. Canonically, miR-574-5p epigenetically regulates the expression of many messenger RNAs (mRNAs) through miRNA-mediated posttranscriptional regulation, thereby affecting cellular physiology or pathophysiology and contributing to the pathogenesis or progression of a variety of diseases. However, recent studies have established that in addition to serving as a fine-tuning repressor of gene expression, miR-574-5p also stimulates gene expression as an endogenous ligand for Toll-like receptor-8/7 (TLR8/7). Indeed, the binding of miR-574-5p to TLR8/7 triggers the TLR signaling pathway, leading to the induction of interferons, inflammatory cytokines and autoimmune signaling. These findings suggest that miR-574-5p is not only an important epigenetic regulator of gene expression, but also an important regulator of immune and inflammatory responses. Abnormal miR-574-5p-TLR8/7 signaling has been shown to be tightly associated with inflammation-related cancers and a number of autoimmune disorders. miR-574-5p can serve as a potential biomarker for many diseases. Most importantly, miR-574-5p is a promising therapeutic target for the treatment or prevention of human disorders, especially infectious diseases, cancers and autoimmune diseases.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"567"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600836/pdf/","citationCount":"0","resultStr":"{\"title\":\"miR-574-5p in epigenetic regulation and Toll-like receptor signaling.\",\"authors\":\"James Y Yang\",\"doi\":\"10.1186/s12964-024-01934-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>miR-574-5p is an unusual microRNA (miRNA) that is often upregulated or downregulated following exposure to irradiation or toxic chemicals; bacterial, parasitic or viral infection; and a variety of other disease conditions. Canonically, miR-574-5p epigenetically regulates the expression of many messenger RNAs (mRNAs) through miRNA-mediated posttranscriptional regulation, thereby affecting cellular physiology or pathophysiology and contributing to the pathogenesis or progression of a variety of diseases. However, recent studies have established that in addition to serving as a fine-tuning repressor of gene expression, miR-574-5p also stimulates gene expression as an endogenous ligand for Toll-like receptor-8/7 (TLR8/7). Indeed, the binding of miR-574-5p to TLR8/7 triggers the TLR signaling pathway, leading to the induction of interferons, inflammatory cytokines and autoimmune signaling. These findings suggest that miR-574-5p is not only an important epigenetic regulator of gene expression, but also an important regulator of immune and inflammatory responses. Abnormal miR-574-5p-TLR8/7 signaling has been shown to be tightly associated with inflammation-related cancers and a number of autoimmune disorders. miR-574-5p can serve as a potential biomarker for many diseases. Most importantly, miR-574-5p is a promising therapeutic target for the treatment or prevention of human disorders, especially infectious diseases, cancers and autoimmune diseases.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"22 1\",\"pages\":\"567\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600836/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-024-01934-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01934-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

miR-574-5p 是一种不常见的微RNA(miRNA),在暴露于辐照或有毒化学物质、细菌、寄生虫或病毒感染以及其他多种疾病条件下,它经常会被上调或下调。通常,miR-574-5p 通过 miRNA 介导的转录后调控,对许多信使 RNA(mRNA)的表达进行表观遗传调控,从而影响细胞生理或病理生理学,并导致多种疾病的发病或进展。然而,最近的研究证实,miR-574-5p 除了作为基因表达的微调抑制因子外,还作为 Toll 样受体-8/7(TLR8/7)的内源配体刺激基因表达。事实上,miR-574-5p 与 TLR8/7 结合会触发 TLR 信号通路,导致干扰素、炎症细胞因子和自身免疫信号的诱导。这些发现表明,miR-574-5p 不仅是基因表达的重要表观遗传调节因子,也是免疫和炎症反应的重要调节因子。miR-574-5p-TLR8/7 信号异常已被证明与炎症相关癌症和多种自身免疫性疾病密切相关。最重要的是,miR-574-5p 是治疗或预防人类疾病(尤其是传染病、癌症和自身免疫性疾病)的一个有希望的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miR-574-5p in epigenetic regulation and Toll-like receptor signaling.

miR-574-5p is an unusual microRNA (miRNA) that is often upregulated or downregulated following exposure to irradiation or toxic chemicals; bacterial, parasitic or viral infection; and a variety of other disease conditions. Canonically, miR-574-5p epigenetically regulates the expression of many messenger RNAs (mRNAs) through miRNA-mediated posttranscriptional regulation, thereby affecting cellular physiology or pathophysiology and contributing to the pathogenesis or progression of a variety of diseases. However, recent studies have established that in addition to serving as a fine-tuning repressor of gene expression, miR-574-5p also stimulates gene expression as an endogenous ligand for Toll-like receptor-8/7 (TLR8/7). Indeed, the binding of miR-574-5p to TLR8/7 triggers the TLR signaling pathway, leading to the induction of interferons, inflammatory cytokines and autoimmune signaling. These findings suggest that miR-574-5p is not only an important epigenetic regulator of gene expression, but also an important regulator of immune and inflammatory responses. Abnormal miR-574-5p-TLR8/7 signaling has been shown to be tightly associated with inflammation-related cancers and a number of autoimmune disorders. miR-574-5p can serve as a potential biomarker for many diseases. Most importantly, miR-574-5p is a promising therapeutic target for the treatment or prevention of human disorders, especially infectious diseases, cancers and autoimmune diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
期刊最新文献
Signal integrator function of CXXC5 in Cancer. The SIRT5-JIP4 interaction promotes osteoclastogenesis by modulating RANKL-induced signaling transduction. Integrative analysis of Ewing's sarcoma reveals that the MIF-CD74 axis is a target for immunotherapy. Klebsiella pneumoniae-derived extracellular vesicles impair endothelial function by inhibiting SIRT1. Targeting the ERK1/2 and p38 MAPK pathways attenuates Golgi tethering factor golgin-97 depletion-induced cancer progression in breast cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1