{"title":"失真产物声发射增长的来龙去脉:回顾。","authors":"Courtney Coburn Glavin, Sumitrajit Dhar","doi":"10.1007/s10162-024-00969-8","DOIUrl":null,"url":null,"abstract":"<p><p>Otoacoustic emissions (OAEs) are low-level signals generated from active processes related to outer hair cell transduction in the cochlea. In current clinical applications, OAEs are typically used to detect the presence or absence of hearing loss. However, their potential extends far beyond hearing screenings. Dr. Glenis Long realized this unfulfilled potential decades ago. She subsequently devoted a large portion of her storied scientific career to understanding OAEs and cochlear mechanics, particularly at the intersection of OAEs and perceptual measures. One specific application of OAEs that has yet to be translated from research laboratories to the clinic is using them to non-invasively characterize cochlear nonlinearity-a hallmark feature of a healthy cochlea-across a wide dynamic range. This can be done by measuring OAEs across input levels to obtain an OAE growth, or input-output (I/O), function. In this review, we describe distortion product OAE (DPOAE) growth and its relation to cochlear nonlinearity and mechanics. We then review biological and measurement factors that are known to influence OAE growth and finish with a discussion of potential applications. Throughout the review, we emphasize Dr. Long's many contributions to the field.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Ins and Outs of Distortion Product Otoacoustic Emission Growth: A Review.\",\"authors\":\"Courtney Coburn Glavin, Sumitrajit Dhar\",\"doi\":\"10.1007/s10162-024-00969-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Otoacoustic emissions (OAEs) are low-level signals generated from active processes related to outer hair cell transduction in the cochlea. In current clinical applications, OAEs are typically used to detect the presence or absence of hearing loss. However, their potential extends far beyond hearing screenings. Dr. Glenis Long realized this unfulfilled potential decades ago. She subsequently devoted a large portion of her storied scientific career to understanding OAEs and cochlear mechanics, particularly at the intersection of OAEs and perceptual measures. One specific application of OAEs that has yet to be translated from research laboratories to the clinic is using them to non-invasively characterize cochlear nonlinearity-a hallmark feature of a healthy cochlea-across a wide dynamic range. This can be done by measuring OAEs across input levels to obtain an OAE growth, or input-output (I/O), function. In this review, we describe distortion product OAE (DPOAE) growth and its relation to cochlear nonlinearity and mechanics. We then review biological and measurement factors that are known to influence OAE growth and finish with a discussion of potential applications. Throughout the review, we emphasize Dr. Long's many contributions to the field.</p>\",\"PeriodicalId\":56283,\"journal\":{\"name\":\"Jaro-Journal of the Association for Research in Otolaryngology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jaro-Journal of the Association for Research in Otolaryngology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10162-024-00969-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jaro-Journal of the Association for Research in Otolaryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10162-024-00969-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The Ins and Outs of Distortion Product Otoacoustic Emission Growth: A Review.
Otoacoustic emissions (OAEs) are low-level signals generated from active processes related to outer hair cell transduction in the cochlea. In current clinical applications, OAEs are typically used to detect the presence or absence of hearing loss. However, their potential extends far beyond hearing screenings. Dr. Glenis Long realized this unfulfilled potential decades ago. She subsequently devoted a large portion of her storied scientific career to understanding OAEs and cochlear mechanics, particularly at the intersection of OAEs and perceptual measures. One specific application of OAEs that has yet to be translated from research laboratories to the clinic is using them to non-invasively characterize cochlear nonlinearity-a hallmark feature of a healthy cochlea-across a wide dynamic range. This can be done by measuring OAEs across input levels to obtain an OAE growth, or input-output (I/O), function. In this review, we describe distortion product OAE (DPOAE) growth and its relation to cochlear nonlinearity and mechanics. We then review biological and measurement factors that are known to influence OAE growth and finish with a discussion of potential applications. Throughout the review, we emphasize Dr. Long's many contributions to the field.
期刊介绍:
JARO is a peer-reviewed journal that publishes research findings from disciplines related to otolaryngology and communications sciences, including hearing, balance, speech and voice. JARO welcomes submissions describing experimental research that investigates the mechanisms underlying problems of basic and/or clinical significance.
Authors are encouraged to familiarize themselves with the kinds of papers carried by JARO by looking at past issues. Clinical case studies and pharmaceutical screens are not likely to be considered unless they reveal underlying mechanisms. Methods papers are not encouraged unless they include significant new findings as well. Reviews will be published at the discretion of the editorial board; consult the editor-in-chief before submitting.