{"title":"通过断开建立镁孪生生长的原子论相场模型","authors":"Yang Hu, Dennis M. Kochmann, Brandon Runnels","doi":"10.1016/j.actamat.2024.120564","DOIUrl":null,"url":null,"abstract":"The nucleation and propagation of disconnections play an essential role during twin growth. Atomistic methods can reveal such small structural features on twin facets and model their motion, yet are limited by the simulation length and time scales. Alternatively, mesoscale modeling approaches (such as the phase field method) address these constraints of atomistic simulations and can maintain atomic-level accuracy when integrated with atomic-level information. In this work, a phase field model is used to simulate the disconnection-mediated twinning, informed by molecular dynamics (MD) simulations. This work considers the specific case of the growth of <span><span style=\"\"><math><mrow is=\"true\"><mo is=\"true\">{</mo><mn is=\"true\">1</mn><mspace is=\"true\" width=\"0.16667em\"></mspace><mn is=\"true\">0</mn><mspace is=\"true\" width=\"0.16667em\"></mspace><mover accent=\"false\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mo accent=\"true\" is=\"true\">¯</mo></mover><mspace is=\"true\" width=\"0.16667em\"></mspace><mn is=\"true\">2</mn><mo is=\"true\">}</mo></mrow></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"4.625ex\" role=\"img\" style=\"vertical-align: -1.735ex;\" viewbox=\"0 -1244 3886.5 1991.2\" width=\"9.027ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use is=\"true\" xlink:href=\"#MJSZ2-7B\"></use><g is=\"true\" transform=\"translate(667,0)\"><use xlink:href=\"#MJMAIN-31\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(1334,0)\"><use xlink:href=\"#MJMAIN-30\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(2001,0)\"><g is=\"true\" transform=\"translate(24,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-31\"></use></g></g><g is=\"true\" transform=\"translate(0,483)\"><use transform=\"scale(0.707)\" x=\"-70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"277\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use></g></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(2718,0)\"><use xlink:href=\"#MJMAIN-32\"></use></g><use is=\"true\" x=\"3219\" xlink:href=\"#MJSZ2-7D\" y=\"-1\"></use></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">{</mo><mn is=\"true\">1</mn><mspace width=\"0.16667em\" is=\"true\"></mspace><mn is=\"true\">0</mn><mspace width=\"0.16667em\" is=\"true\"></mspace><mover accent=\"false\" is=\"true\"><mrow is=\"true\"><mn is=\"true\">1</mn></mrow><mo accent=\"true\" is=\"true\">¯</mo></mover><mspace width=\"0.16667em\" is=\"true\"></mspace><mn is=\"true\">2</mn><mo is=\"true\">}</mo></mrow></math></script></span> twin in magnesium. MD simulations are first conducted to obtain the orientation-dependent interface mobility and motion threshold, and to simulate twin embryo growth and collect facet velocities, which can be used for calibrating the continuum model. The phase field disconnections model, based on the principle of minimum dissipation potential, provides the theoretical framework. This model incorporates a nonconvex grain boundary energy, elasticity and shear coupling, and simulates disconnections as a natural emergence under the elastic driving force. The phase field model is further optimized by including the anisotropic interface mobility and motion threshold suggested by MD simulations. Results agree with MD simulations of twin embryo growth in the aspects of final twin thickness, twin shape, and twin size, as well as the kinetic behavior of twin boundaries and twin tips. The simulated twin microstructure is also consistent with experimental observations, demonstrating the fidelity of the model.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"70 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomistic-informed phase field modeling of magnesium twin growth by disconnections\",\"authors\":\"Yang Hu, Dennis M. Kochmann, Brandon Runnels\",\"doi\":\"10.1016/j.actamat.2024.120564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nucleation and propagation of disconnections play an essential role during twin growth. Atomistic methods can reveal such small structural features on twin facets and model their motion, yet are limited by the simulation length and time scales. Alternatively, mesoscale modeling approaches (such as the phase field method) address these constraints of atomistic simulations and can maintain atomic-level accuracy when integrated with atomic-level information. In this work, a phase field model is used to simulate the disconnection-mediated twinning, informed by molecular dynamics (MD) simulations. This work considers the specific case of the growth of <span><span style=\\\"\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">{</mo><mn is=\\\"true\\\">1</mn><mspace is=\\\"true\\\" width=\\\"0.16667em\\\"></mspace><mn is=\\\"true\\\">0</mn><mspace is=\\\"true\\\" width=\\\"0.16667em\\\"></mspace><mover accent=\\\"false\\\" is=\\\"true\\\"><mrow is=\\\"true\\\"><mn is=\\\"true\\\">1</mn></mrow><mo accent=\\\"true\\\" is=\\\"true\\\">¯</mo></mover><mspace is=\\\"true\\\" width=\\\"0.16667em\\\"></mspace><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">}</mo></mrow></math></span><span style=\\\"font-size: 90%; display: inline-block;\\\" tabindex=\\\"0\\\"><svg focusable=\\\"false\\\" height=\\\"4.625ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -1.735ex;\\\" viewbox=\\\"0 -1244 3886.5 1991.2\\\" width=\\\"9.027ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use is=\\\"true\\\" xlink:href=\\\"#MJSZ2-7B\\\"></use><g is=\\\"true\\\" transform=\\\"translate(667,0)\\\"><use xlink:href=\\\"#MJMAIN-31\\\"></use></g><g is=\\\"true\\\"></g><g is=\\\"true\\\" transform=\\\"translate(1334,0)\\\"><use xlink:href=\\\"#MJMAIN-30\\\"></use></g><g is=\\\"true\\\"></g><g is=\\\"true\\\" transform=\\\"translate(2001,0)\\\"><g is=\\\"true\\\" transform=\\\"translate(24,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-31\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(0,483)\\\"><use transform=\\\"scale(0.707)\\\" x=\\\"-70\\\" xlink:href=\\\"#MJMAIN-AF\\\" y=\\\"0\\\"></use><use transform=\\\"scale(0.707)\\\" x=\\\"277\\\" xlink:href=\\\"#MJMAIN-AF\\\" y=\\\"0\\\"></use></g></g><g is=\\\"true\\\"></g><g is=\\\"true\\\" transform=\\\"translate(2718,0)\\\"><use xlink:href=\\\"#MJMAIN-32\\\"></use></g><use is=\\\"true\\\" x=\\\"3219\\\" xlink:href=\\\"#MJSZ2-7D\\\" y=\\\"-1\\\"></use></g></g></svg></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mo is=\\\"true\\\">{</mo><mn is=\\\"true\\\">1</mn><mspace width=\\\"0.16667em\\\" is=\\\"true\\\"></mspace><mn is=\\\"true\\\">0</mn><mspace width=\\\"0.16667em\\\" is=\\\"true\\\"></mspace><mover accent=\\\"false\\\" is=\\\"true\\\"><mrow is=\\\"true\\\"><mn is=\\\"true\\\">1</mn></mrow><mo accent=\\\"true\\\" is=\\\"true\\\">¯</mo></mover><mspace width=\\\"0.16667em\\\" is=\\\"true\\\"></mspace><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">}</mo></mrow></math></script></span> twin in magnesium. MD simulations are first conducted to obtain the orientation-dependent interface mobility and motion threshold, and to simulate twin embryo growth and collect facet velocities, which can be used for calibrating the continuum model. The phase field disconnections model, based on the principle of minimum dissipation potential, provides the theoretical framework. This model incorporates a nonconvex grain boundary energy, elasticity and shear coupling, and simulates disconnections as a natural emergence under the elastic driving force. The phase field model is further optimized by including the anisotropic interface mobility and motion threshold suggested by MD simulations. Results agree with MD simulations of twin embryo growth in the aspects of final twin thickness, twin shape, and twin size, as well as the kinetic behavior of twin boundaries and twin tips. The simulated twin microstructure is also consistent with experimental observations, demonstrating the fidelity of the model.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2024.120564\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120564","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Atomistic-informed phase field modeling of magnesium twin growth by disconnections
The nucleation and propagation of disconnections play an essential role during twin growth. Atomistic methods can reveal such small structural features on twin facets and model their motion, yet are limited by the simulation length and time scales. Alternatively, mesoscale modeling approaches (such as the phase field method) address these constraints of atomistic simulations and can maintain atomic-level accuracy when integrated with atomic-level information. In this work, a phase field model is used to simulate the disconnection-mediated twinning, informed by molecular dynamics (MD) simulations. This work considers the specific case of the growth of twin in magnesium. MD simulations are first conducted to obtain the orientation-dependent interface mobility and motion threshold, and to simulate twin embryo growth and collect facet velocities, which can be used for calibrating the continuum model. The phase field disconnections model, based on the principle of minimum dissipation potential, provides the theoretical framework. This model incorporates a nonconvex grain boundary energy, elasticity and shear coupling, and simulates disconnections as a natural emergence under the elastic driving force. The phase field model is further optimized by including the anisotropic interface mobility and motion threshold suggested by MD simulations. Results agree with MD simulations of twin embryo growth in the aspects of final twin thickness, twin shape, and twin size, as well as the kinetic behavior of twin boundaries and twin tips. The simulated twin microstructure is also consistent with experimental observations, demonstrating the fidelity of the model.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.