IGZO/ITO 异质结构沟道薄膜晶体管中的有效界面沟道控制

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Electron Device Letters Pub Date : 2024-10-10 DOI:10.1109/LED.2024.3477438
Jie Luo;Yanyu Yang;Yupeng Lu;Yunjiao Bao;Guilei Wang;Gaobo Xu;Huaxiang Yin;Chao Zhao;Jun Luo
{"title":"IGZO/ITO 异质结构沟道薄膜晶体管中的有效界面沟道控制","authors":"Jie Luo;Yanyu Yang;Yupeng Lu;Yunjiao Bao;Guilei Wang;Gaobo Xu;Huaxiang Yin;Chao Zhao;Jun Luo","doi":"10.1109/LED.2024.3477438","DOIUrl":null,"url":null,"abstract":"During the investigation of amorphous oxide semiconductor thin film transistors (TFTs), researchers found that TFTs containing a heterostructure-channel demonstrate exceptional mobility. This study focuses on the physical insights into the interfacial channel formation and modulating the device performance. The InGaZnO / InSnO heterostructure-channel TFTs were utilized. The band structure of their interface channel was elucidated by Ultraviolet Photoelectron Spectroscopy and Reflection Electron Energy Loss Spectroscopy. Through the examination of the band structures of heterostructure -channel TFTs, we have discovered that the thickness of the InSnO layer can modify the interface band-edge via the quantum confinement effect. By that, the threshold voltage of the heterostructure-channel TFT was altered.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 12","pages":"2419-2422"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Interface Channel Control in IGZO/ITO Heterostructure-Channel Thin Film Transistors\",\"authors\":\"Jie Luo;Yanyu Yang;Yupeng Lu;Yunjiao Bao;Guilei Wang;Gaobo Xu;Huaxiang Yin;Chao Zhao;Jun Luo\",\"doi\":\"10.1109/LED.2024.3477438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the investigation of amorphous oxide semiconductor thin film transistors (TFTs), researchers found that TFTs containing a heterostructure-channel demonstrate exceptional mobility. This study focuses on the physical insights into the interfacial channel formation and modulating the device performance. The InGaZnO / InSnO heterostructure-channel TFTs were utilized. The band structure of their interface channel was elucidated by Ultraviolet Photoelectron Spectroscopy and Reflection Electron Energy Loss Spectroscopy. Through the examination of the band structures of heterostructure -channel TFTs, we have discovered that the thickness of the InSnO layer can modify the interface band-edge via the quantum confinement effect. By that, the threshold voltage of the heterostructure-channel TFT was altered.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 12\",\"pages\":\"2419-2422\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10713393/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10713393/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在对非晶氧化物半导体薄膜晶体管(TFT)的研究过程中,研究人员发现含有异质结构沟道的 TFT 具有优异的迁移率。本研究的重点是对界面沟道形成和器件性能调制的物理洞察。研究采用了 InGaZnO / InSnO 异质结构沟道 TFT。利用紫外光电子能谱和反射电子能量损失能谱阐明了其界面沟道的能带结构。通过研究异质结构沟道 TFT 的带状结构,我们发现 InSnO 层的厚度可以通过量子约束效应改变界面带边。由此,异质结构沟道 TFT 的阈值电压发生了变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective Interface Channel Control in IGZO/ITO Heterostructure-Channel Thin Film Transistors
During the investigation of amorphous oxide semiconductor thin film transistors (TFTs), researchers found that TFTs containing a heterostructure-channel demonstrate exceptional mobility. This study focuses on the physical insights into the interfacial channel formation and modulating the device performance. The InGaZnO / InSnO heterostructure-channel TFTs were utilized. The band structure of their interface channel was elucidated by Ultraviolet Photoelectron Spectroscopy and Reflection Electron Energy Loss Spectroscopy. Through the examination of the band structures of heterostructure -channel TFTs, we have discovered that the thickness of the InSnO layer can modify the interface band-edge via the quantum confinement effect. By that, the threshold voltage of the heterostructure-channel TFT was altered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
期刊最新文献
Front Cover Table of Contents IEEE Transactions on Electron Devices Table of Contents IEEE Electron Device Letters Information for Authors EDS Meetings Calendar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1