部分强化优化器的学习阶段与用于光伏模型参数提取的 Nelder-Mead 单纯形法

IF 4.9 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Journal of Bionic Engineering Pub Date : 2024-11-21 DOI:10.1007/s42235-024-00593-5
Jinpeng Huang, Zhennao Cai, Ali Asghar Heidari, Lei Liu, Huiling Chen, Guoxi Liang
{"title":"部分强化优化器的学习阶段与用于光伏模型参数提取的 Nelder-Mead 单纯形法","authors":"Jinpeng Huang,&nbsp;Zhennao Cai,&nbsp;Ali Asghar Heidari,&nbsp;Lei Liu,&nbsp;Huiling Chen,&nbsp;Guoxi Liang","doi":"10.1007/s42235-024-00593-5","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes an improved version of the Partial Reinforcement Optimizer (PRO), termed LNPRO. The LNPRO has undergone a learner phase, which allows for further communication of information among the PRO population, changing the state of the PRO in terms of self-strengthening. Furthermore, the Nelder-Mead simplex is used to optimize the best agent in the population, accelerating the convergence speed and improving the accuracy of the PRO population. By comparing LNPRO with nine advanced algorithms in the IEEE CEC 2022 benchmark function, the convergence accuracy of the LNPRO has been verified. The accuracy and stability of simulated data and real data in the parameter extraction of PV systems are crucial. Compared to the PRO, the precision and stability of LNPRO have indeed been enhanced in four types of photovoltaic components, and it is also superior to other excellent algorithms. To further verify the parameter extraction problem of LNPRO in complex environments, LNPRO has been applied to three types of manufacturer data, demonstrating excellent results under varying irradiation and temperatures. In summary, LNPRO holds immense potential in solving the parameter extraction problems in PV systems.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 6","pages":"3041 - 3075"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learner Phase of Partial Reinforcement Optimizer with Nelder-Mead Simplex for Parameter Extraction of Photovoltaic Models\",\"authors\":\"Jinpeng Huang,&nbsp;Zhennao Cai,&nbsp;Ali Asghar Heidari,&nbsp;Lei Liu,&nbsp;Huiling Chen,&nbsp;Guoxi Liang\",\"doi\":\"10.1007/s42235-024-00593-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes an improved version of the Partial Reinforcement Optimizer (PRO), termed LNPRO. The LNPRO has undergone a learner phase, which allows for further communication of information among the PRO population, changing the state of the PRO in terms of self-strengthening. Furthermore, the Nelder-Mead simplex is used to optimize the best agent in the population, accelerating the convergence speed and improving the accuracy of the PRO population. By comparing LNPRO with nine advanced algorithms in the IEEE CEC 2022 benchmark function, the convergence accuracy of the LNPRO has been verified. The accuracy and stability of simulated data and real data in the parameter extraction of PV systems are crucial. Compared to the PRO, the precision and stability of LNPRO have indeed been enhanced in four types of photovoltaic components, and it is also superior to other excellent algorithms. To further verify the parameter extraction problem of LNPRO in complex environments, LNPRO has been applied to three types of manufacturer data, demonstrating excellent results under varying irradiation and temperatures. In summary, LNPRO holds immense potential in solving the parameter extraction problems in PV systems.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 6\",\"pages\":\"3041 - 3075\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00593-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00593-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了部分强化优化器(PRO)的改进版本,称为 LNPRO。LNPRO 经历了一个学习者阶段,该阶段允许 PRO 群体之间进一步交流信息,改变 PRO 的自我强化状态。此外,LNPRO 还使用了 Nelder-Mead 单纯形法来优化群体中的最佳代理,从而加快了收敛速度,提高了 PRO 群体的准确性。通过将 LNPRO 与 IEEE CEC 2022 基准函数中的九种先进算法进行比较,验证了 LNPRO 的收敛精度。在光伏系统参数提取中,模拟数据和真实数据的精度和稳定性至关重要。与 PRO 相比,LNPRO 在四类光伏组件中的精度和稳定性确实得到了提高,同时也优于其他优秀算法。为了进一步验证 LNPRO 在复杂环境下的参数提取问题,LNPRO 已应用于三种类型的制造商数据,在不同辐照度和温度下均显示出优异的结果。总之,LNPRO 在解决光伏系统参数提取问题方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learner Phase of Partial Reinforcement Optimizer with Nelder-Mead Simplex for Parameter Extraction of Photovoltaic Models

This paper proposes an improved version of the Partial Reinforcement Optimizer (PRO), termed LNPRO. The LNPRO has undergone a learner phase, which allows for further communication of information among the PRO population, changing the state of the PRO in terms of self-strengthening. Furthermore, the Nelder-Mead simplex is used to optimize the best agent in the population, accelerating the convergence speed and improving the accuracy of the PRO population. By comparing LNPRO with nine advanced algorithms in the IEEE CEC 2022 benchmark function, the convergence accuracy of the LNPRO has been verified. The accuracy and stability of simulated data and real data in the parameter extraction of PV systems are crucial. Compared to the PRO, the precision and stability of LNPRO have indeed been enhanced in four types of photovoltaic components, and it is also superior to other excellent algorithms. To further verify the parameter extraction problem of LNPRO in complex environments, LNPRO has been applied to three types of manufacturer data, demonstrating excellent results under varying irradiation and temperatures. In summary, LNPRO holds immense potential in solving the parameter extraction problems in PV systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bionic Engineering
Journal of Bionic Engineering 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
10.00%
发文量
162
审稿时长
10.0 months
期刊介绍: The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to: Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion. Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials. Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices. Development of bioinspired computation methods and artificial intelligence for engineering applications.
期刊最新文献
Learner Phase of Partial Reinforcement Optimizer with Nelder-Mead Simplex for Parameter Extraction of Photovoltaic Models A Finite Element Human Body Model of Chinese Midsize Male for Pedestrian Safety Analysis Biomimetic Surface Texturing with Tunable Stimulus-Responsive Friction Anisotropy Exploring the Potential of ChatGPT for Finding Engineering Biomimetic Solutions: A Theoretical Framework and Practical Insights Piezoelectric Field Effect Transistors (Piezo-FETs) for Bionic MEMS Sensors: A Literature Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1