用四羟基苯醌修饰的磁铁矿纳米颗粒的磁性和电化学特征

IF 3.674 4区 工程技术 Q1 Engineering Applied Nanoscience Pub Date : 2024-11-21 DOI:10.1007/s13204-024-03070-x
A. G. González-Gutiérrez, Raúl R. Quiñonez-López, M. E. Cano, L. H. Quintero, Norberto Casillas
{"title":"用四羟基苯醌修饰的磁铁矿纳米颗粒的磁性和电化学特征","authors":"A. G. González-Gutiérrez,&nbsp;Raúl R. Quiñonez-López,&nbsp;M. E. Cano,&nbsp;L. H. Quintero,&nbsp;Norberto Casillas","doi":"10.1007/s13204-024-03070-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a method for synthesizing superparamagnetic nanoparticles through the co-precipitation method, with a coating of tetrahydroxy-1,4-quinone (THQ). The diameter of the magnetite nanoparticles (MNPs) covered with THQ varied depending on the recovery method applied. When collected through magnetic decantation, they exhibited an average diameter of 15 ± 3 nm, while centrifugation of the supernatant further reduced the diameter to 12 ± 3 nm. In contrast, the uncoated MNPs had an average diameter of 17 ± 5 nm. The smaller MNPs coated with THQ displayed very low magnetic hysteresis and demonstrated superparamagnetic behavior, indicated by a blocking temperature of less than 300 K. Characterization of both the coated and uncoated MNPs encompassed structural, morphological, size, and magnetic property analyses using X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM), respectively. Fourier-transform infrared spectroscopy (FT-IR) and UV–Vis spectroscopy were employed to investigate the chemical interaction between THQ and the MNPs. In addition, cyclic voltammetry was used to compare the electrochemical changes of THQ, MNPs, and MNPs coated with THQ.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 12","pages":"1103 - 1113"},"PeriodicalIF":3.6740,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic and electrochemical characterization of magnetite nanoparticles modified with tetrahydroxyquinone\",\"authors\":\"A. G. González-Gutiérrez,&nbsp;Raúl R. Quiñonez-López,&nbsp;M. E. Cano,&nbsp;L. H. Quintero,&nbsp;Norberto Casillas\",\"doi\":\"10.1007/s13204-024-03070-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a method for synthesizing superparamagnetic nanoparticles through the co-precipitation method, with a coating of tetrahydroxy-1,4-quinone (THQ). The diameter of the magnetite nanoparticles (MNPs) covered with THQ varied depending on the recovery method applied. When collected through magnetic decantation, they exhibited an average diameter of 15 ± 3 nm, while centrifugation of the supernatant further reduced the diameter to 12 ± 3 nm. In contrast, the uncoated MNPs had an average diameter of 17 ± 5 nm. The smaller MNPs coated with THQ displayed very low magnetic hysteresis and demonstrated superparamagnetic behavior, indicated by a blocking temperature of less than 300 K. Characterization of both the coated and uncoated MNPs encompassed structural, morphological, size, and magnetic property analyses using X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM), respectively. Fourier-transform infrared spectroscopy (FT-IR) and UV–Vis spectroscopy were employed to investigate the chemical interaction between THQ and the MNPs. In addition, cyclic voltammetry was used to compare the electrochemical changes of THQ, MNPs, and MNPs coated with THQ.</p></div>\",\"PeriodicalId\":471,\"journal\":{\"name\":\"Applied Nanoscience\",\"volume\":\"14 12\",\"pages\":\"1103 - 1113\"},\"PeriodicalIF\":3.6740,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Nanoscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13204-024-03070-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-024-03070-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种通过共沉淀法合成超顺磁性纳米粒子的方法,该方法在纳米粒子上包覆了四羟基-1,4-醌(THQ)。被四羟基-1,4-醌(THQ)包覆的磁铁矿纳米颗粒(MNPs)的直径因采用的回收方法而异。通过磁力倾析法收集时,它们的平均直径为 15 ± 3 nm,而上清液离心后,直径进一步减小到 12 ± 3 nm。相比之下,未涂层的 MNPs 平均直径为 17 ± 5 nm。使用 X 射线衍射 (XRD)、透射电子显微镜 (TEM) 和振动样品磁力计 (VSM) 分别对涂覆和未涂覆的 MNPs 进行了结构、形态、尺寸和磁性分析。傅立叶变换红外光谱(FT-IR)和紫外可见光谱用于研究 THQ 与 MNPs 之间的化学作用。此外,还使用循环伏安法比较了 THQ、MNPs 和涂有 THQ 的 MNPs 的电化学变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetic and electrochemical characterization of magnetite nanoparticles modified with tetrahydroxyquinone

This study presents a method for synthesizing superparamagnetic nanoparticles through the co-precipitation method, with a coating of tetrahydroxy-1,4-quinone (THQ). The diameter of the magnetite nanoparticles (MNPs) covered with THQ varied depending on the recovery method applied. When collected through magnetic decantation, they exhibited an average diameter of 15 ± 3 nm, while centrifugation of the supernatant further reduced the diameter to 12 ± 3 nm. In contrast, the uncoated MNPs had an average diameter of 17 ± 5 nm. The smaller MNPs coated with THQ displayed very low magnetic hysteresis and demonstrated superparamagnetic behavior, indicated by a blocking temperature of less than 300 K. Characterization of both the coated and uncoated MNPs encompassed structural, morphological, size, and magnetic property analyses using X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM), respectively. Fourier-transform infrared spectroscopy (FT-IR) and UV–Vis spectroscopy were employed to investigate the chemical interaction between THQ and the MNPs. In addition, cyclic voltammetry was used to compare the electrochemical changes of THQ, MNPs, and MNPs coated with THQ.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Nanoscience
Applied Nanoscience Materials Science-Materials Science (miscellaneous)
CiteScore
7.10
自引率
0.00%
发文量
430
期刊介绍: Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.
期刊最新文献
Exploring SrTiO3 nanoparticles thereby unveiling the impact of europium (Eu3⁺) doping Performance SiO2, GO, and SiO2@GO nanomaterials on fabricating new polymer nanocomposites for optical, antibacterial, and anticancer applications Properties of single-walled carbon nanotube film/Si heterojunctions fabricated in situ Advances in silver nanoparticles: unraveling biological activities, mechanisms of action, and toxicity Comparative evaluation of antibacterial efficacy of silver nanoparticles synthesized with Cannabis sativa extract at different concentrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1