通过厚度控制调整 LuAG:Ce 薄膜的热性能和发光性能,实现高功率激光照明应用

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-10-26 DOI:10.1007/s12598-024-03023-x
Shao-Hong Liu, Bing-Guo Xue, Li-Min Zhou, Hao Cui, Man-Men Liu, Li Chen, Ming Wen, Hai-Gang Dong, Feng Liu, Wei Wang, Song Li
{"title":"通过厚度控制调整 LuAG:Ce 薄膜的热性能和发光性能,实现高功率激光照明应用","authors":"Shao-Hong Liu,&nbsp;Bing-Guo Xue,&nbsp;Li-Min Zhou,&nbsp;Hao Cui,&nbsp;Man-Men Liu,&nbsp;Li Chen,&nbsp;Ming Wen,&nbsp;Hai-Gang Dong,&nbsp;Feng Liu,&nbsp;Wei Wang,&nbsp;Song Li","doi":"10.1007/s12598-024-03023-x","DOIUrl":null,"url":null,"abstract":"<div><p>Lutetium aluminum garnet doped with cerium (LuAG:Ce) thin films have been identified as a promising material for high-power laser-driven lighting applications. In this study, spray pyrolysis we employed to fabricate LuAG:Ce films on sapphire substrates and the impact of film thickness on thermal management and light emission efficiency was investigated. Our results show that, regardless of thickness, LuAG:Ce films exhibit impressive internal quantum efficiencies (IQE) exceeding 83.2% and external quantum efficiencies (EQE) surpassing 56.4%, with minimal alteration of luminescent color. Notably, thinner films facilitate more efficient heat dissipation to the underlying sapphire substrate, resulting in superior thermal management and outstanding luminous performance under high-power laser excitation. Specifically, the thinnest LuAG:Ce film (15.79 μm) exhibited rapid thermal stabilization (~ 130 °C within 30 s) and maintained stability during continuous irradiation lasting 30 min, with a corresponding decrease in luminous flux to 87.9% of its initial value within the first 60 s. This film also demonstrated relatively high and stable conversion efficiency and luminous efficiency, achieving higher saturation thresholds (15 W·mm<sup>−2</sup>) and luminous flux (1070 lm). In contrast, thicker films exhibited a shift in the saturation point toward lower power densities. These findings provide valuable insights for the practical implementation of LuAG:Ce films in advanced lighting technologies.</p><h3>Graphic abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"43 12","pages":"6537 - 6548"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring thermal behavior and luminous performance in LuAG:Ce films via thickness control for high-power laser lighting applications\",\"authors\":\"Shao-Hong Liu,&nbsp;Bing-Guo Xue,&nbsp;Li-Min Zhou,&nbsp;Hao Cui,&nbsp;Man-Men Liu,&nbsp;Li Chen,&nbsp;Ming Wen,&nbsp;Hai-Gang Dong,&nbsp;Feng Liu,&nbsp;Wei Wang,&nbsp;Song Li\",\"doi\":\"10.1007/s12598-024-03023-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lutetium aluminum garnet doped with cerium (LuAG:Ce) thin films have been identified as a promising material for high-power laser-driven lighting applications. In this study, spray pyrolysis we employed to fabricate LuAG:Ce films on sapphire substrates and the impact of film thickness on thermal management and light emission efficiency was investigated. Our results show that, regardless of thickness, LuAG:Ce films exhibit impressive internal quantum efficiencies (IQE) exceeding 83.2% and external quantum efficiencies (EQE) surpassing 56.4%, with minimal alteration of luminescent color. Notably, thinner films facilitate more efficient heat dissipation to the underlying sapphire substrate, resulting in superior thermal management and outstanding luminous performance under high-power laser excitation. Specifically, the thinnest LuAG:Ce film (15.79 μm) exhibited rapid thermal stabilization (~ 130 °C within 30 s) and maintained stability during continuous irradiation lasting 30 min, with a corresponding decrease in luminous flux to 87.9% of its initial value within the first 60 s. This film also demonstrated relatively high and stable conversion efficiency and luminous efficiency, achieving higher saturation thresholds (15 W·mm<sup>−2</sup>) and luminous flux (1070 lm). In contrast, thicker films exhibited a shift in the saturation point toward lower power densities. These findings provide valuable insights for the practical implementation of LuAG:Ce films in advanced lighting technologies.</p><h3>Graphic abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"43 12\",\"pages\":\"6537 - 6548\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-024-03023-x\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03023-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

掺杂铈的镥铝石榴石(LuAG:Ce)薄膜已被确定为一种有望用于高功率激光驱动照明应用的材料。在这项研究中,我们采用喷雾热解技术在蓝宝石基底上制造了 LuAG:Ce 薄膜,并研究了薄膜厚度对热管理和光发射效率的影响。研究结果表明,无论薄膜厚度如何,LuAG:Ce 薄膜的内部量子效率(IQE)均超过 83.2%,外部量子效率(EQE)超过 56.4%,且发光颜色的变化极小。值得注意的是,更薄的薄膜有利于更有效地向底层蓝宝石衬底散热,从而实现卓越的热管理和高功率激光激发下的出色发光性能。具体来说,最薄的 LuAG:Ce 薄膜(15.79 μm)表现出快速的热稳定(30 秒内约 130 °C),并在持续照射 30 分钟后保持稳定,光通量在最初 60 秒内相应降至初始值的 87.9%。相比之下,较厚的薄膜显示出饱和点向较低功率密度的转移。这些发现为在先进照明技术中实际应用 LuAG:Ce 薄膜提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tailoring thermal behavior and luminous performance in LuAG:Ce films via thickness control for high-power laser lighting applications

Lutetium aluminum garnet doped with cerium (LuAG:Ce) thin films have been identified as a promising material for high-power laser-driven lighting applications. In this study, spray pyrolysis we employed to fabricate LuAG:Ce films on sapphire substrates and the impact of film thickness on thermal management and light emission efficiency was investigated. Our results show that, regardless of thickness, LuAG:Ce films exhibit impressive internal quantum efficiencies (IQE) exceeding 83.2% and external quantum efficiencies (EQE) surpassing 56.4%, with minimal alteration of luminescent color. Notably, thinner films facilitate more efficient heat dissipation to the underlying sapphire substrate, resulting in superior thermal management and outstanding luminous performance under high-power laser excitation. Specifically, the thinnest LuAG:Ce film (15.79 μm) exhibited rapid thermal stabilization (~ 130 °C within 30 s) and maintained stability during continuous irradiation lasting 30 min, with a corresponding decrease in luminous flux to 87.9% of its initial value within the first 60 s. This film also demonstrated relatively high and stable conversion efficiency and luminous efficiency, achieving higher saturation thresholds (15 W·mm−2) and luminous flux (1070 lm). In contrast, thicker films exhibited a shift in the saturation point toward lower power densities. These findings provide valuable insights for the practical implementation of LuAG:Ce films in advanced lighting technologies.

Graphic abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Multi-scale inhomogeneity and anomalous mechanical response of nanoscale metallic glass pillar by cryogenic thermal cycling Preparation and electrocatalytic performance of novel-integrated Ni-Mo sulfide electrode materials for water splitting Tailoring thermal behavior and luminous performance in LuAG:Ce films via thickness control for high-power laser lighting applications Synergistic Cu single-atoms and clusters on tubular carbon nitride for efficient photocatalytic performances Enhanced thermoelectric performance in p-type AgBiSe2 through carrier concentration optimization and valence band modification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1