{"title":"生物凝胶库--加速全天然生物电子学的发现。","authors":"Qiankun Zeng, Ning Tang, Guoyue Shi, Min Zhang","doi":"10.1021/acssensors.4c02297","DOIUrl":null,"url":null,"abstract":"<p><p>Biogels prepared from natural biopolymers are ideal candidates for constructing bioelectronics from the perspective of commercialization and environmental sustainability. However, discovering all-natural biogels that meet specific properties, such as mechanical properties, optical transparency, and stability, remains challenging. Here, our study introduces a revolutionary biogel library, a novel resource that significantly accelerates the discovery and application of suitable all-natural biogel materials for bioelectronics. Utilizing a high-throughput screening system designed with a frontend/backend development strategy, this biogel library facilitates the swift screening and customization of biogels, tailored to meet specific performance criteria. Along with demonstrating applications in soft bioelectronics and printed bioelectronics, this research also thoroughly investigates the recyclability and environmental impacts of biogels, setting a foundation for their use in sustainable, closed-loop ecological systems. This pioneering approach serves not only to foster the departure from petrochemical-derived polymers but also to bolster the advancement of environmentally responsible bioelectronics.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biogel Library-Accelerated Discovery of All-Natural Bioelectronics.\",\"authors\":\"Qiankun Zeng, Ning Tang, Guoyue Shi, Min Zhang\",\"doi\":\"10.1021/acssensors.4c02297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biogels prepared from natural biopolymers are ideal candidates for constructing bioelectronics from the perspective of commercialization and environmental sustainability. However, discovering all-natural biogels that meet specific properties, such as mechanical properties, optical transparency, and stability, remains challenging. Here, our study introduces a revolutionary biogel library, a novel resource that significantly accelerates the discovery and application of suitable all-natural biogel materials for bioelectronics. Utilizing a high-throughput screening system designed with a frontend/backend development strategy, this biogel library facilitates the swift screening and customization of biogels, tailored to meet specific performance criteria. Along with demonstrating applications in soft bioelectronics and printed bioelectronics, this research also thoroughly investigates the recyclability and environmental impacts of biogels, setting a foundation for their use in sustainable, closed-loop ecological systems. This pioneering approach serves not only to foster the departure from petrochemical-derived polymers but also to bolster the advancement of environmentally responsible bioelectronics.</p>\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssensors.4c02297\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02297","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Biogel Library-Accelerated Discovery of All-Natural Bioelectronics.
Biogels prepared from natural biopolymers are ideal candidates for constructing bioelectronics from the perspective of commercialization and environmental sustainability. However, discovering all-natural biogels that meet specific properties, such as mechanical properties, optical transparency, and stability, remains challenging. Here, our study introduces a revolutionary biogel library, a novel resource that significantly accelerates the discovery and application of suitable all-natural biogel materials for bioelectronics. Utilizing a high-throughput screening system designed with a frontend/backend development strategy, this biogel library facilitates the swift screening and customization of biogels, tailored to meet specific performance criteria. Along with demonstrating applications in soft bioelectronics and printed bioelectronics, this research also thoroughly investigates the recyclability and environmental impacts of biogels, setting a foundation for their use in sustainable, closed-loop ecological systems. This pioneering approach serves not only to foster the departure from petrochemical-derived polymers but also to bolster the advancement of environmentally responsible bioelectronics.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.