大脑老化的分子和细胞基础:阿尔茨海默病的抗衰老策略》。

IF 3.6 4区 医学 Q3 CELL BIOLOGY Cellular and Molecular Neurobiology Pub Date : 2024-11-28 DOI:10.1007/s10571-024-01514-0
Magdalena Dziewa, Magdalena Złotek, Mariola Herbet, Iwona Piątkowska-Chmiel
{"title":"大脑老化的分子和细胞基础:阿尔茨海默病的抗衰老策略》。","authors":"Magdalena Dziewa, Magdalena Złotek, Mariola Herbet, Iwona Piątkowska-Chmiel","doi":"10.1007/s10571-024-01514-0","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a condition characterized by the gradual degeneration of the nervous system that poses significant challenges to cognitive function and overall mental health. Given the increasing global life expectancy, there is an urgent need for effective strategies to prevent and manage Alzheimer's disease, with a particular focus on anti-aging interventions. Recent scientific advancements have unveiled several promising strategies for combating Alzheimer's disease (AD), ranging from lifestyle interventions to cutting-edge pharmacological treatments and therapies targeting the underlying biological processes of aging and AD. Regular physical exercise, cognitive engagement, a balanced diet, and social interaction serve as key pillars in maintaining brain health. At the same time, therapies target key pathological mechanisms of AD, such as amyloid-beta accumulation, tau abnormalities, neuroinflammation, mitochondrial dysfunction, and synaptic loss, offering potential breakthroughs in treatment. Moreover, cutting-edge innovations such as gene therapy, stem cell transplantation, and novel drug delivery systems are emerging as potential game-changers in the fight against AD. This review critically evaluates the latest research on anti-aging interventions and their potential in preventing and treating Alzheimer's disease (AD) by exploring the connections between aging mechanisms and AD pathogenesis. It provides a comprehensive analysis of both well-established and emerging strategies, while also identifying key gaps in current knowledge to guide future research efforts.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"44 1","pages":"80"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604688/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular and Cellular Foundations of Aging of the Brain: Anti-aging Strategies in Alzheimer's Disease.\",\"authors\":\"Magdalena Dziewa, Magdalena Złotek, Mariola Herbet, Iwona Piątkowska-Chmiel\",\"doi\":\"10.1007/s10571-024-01514-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a condition characterized by the gradual degeneration of the nervous system that poses significant challenges to cognitive function and overall mental health. Given the increasing global life expectancy, there is an urgent need for effective strategies to prevent and manage Alzheimer's disease, with a particular focus on anti-aging interventions. Recent scientific advancements have unveiled several promising strategies for combating Alzheimer's disease (AD), ranging from lifestyle interventions to cutting-edge pharmacological treatments and therapies targeting the underlying biological processes of aging and AD. Regular physical exercise, cognitive engagement, a balanced diet, and social interaction serve as key pillars in maintaining brain health. At the same time, therapies target key pathological mechanisms of AD, such as amyloid-beta accumulation, tau abnormalities, neuroinflammation, mitochondrial dysfunction, and synaptic loss, offering potential breakthroughs in treatment. Moreover, cutting-edge innovations such as gene therapy, stem cell transplantation, and novel drug delivery systems are emerging as potential game-changers in the fight against AD. This review critically evaluates the latest research on anti-aging interventions and their potential in preventing and treating Alzheimer's disease (AD) by exploring the connections between aging mechanisms and AD pathogenesis. It provides a comprehensive analysis of both well-established and emerging strategies, while also identifying key gaps in current knowledge to guide future research efforts.</p>\",\"PeriodicalId\":9742,\"journal\":{\"name\":\"Cellular and Molecular Neurobiology\",\"volume\":\"44 1\",\"pages\":\"80\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604688/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10571-024-01514-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10571-024-01514-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种以神经系统逐渐退化为特征的疾病,对认知功能和整体心理健康构成重大挑战。随着全球人口寿命的延长,人们迫切需要有效的策略来预防和控制阿尔茨海默病,尤其是抗衰老干预措施。最近的科学进步揭示了几种很有希望的抗击阿尔茨海默病(AD)的策略,从生活方式干预到针对衰老和阿尔茨海默病潜在生物过程的尖端药物治疗和疗法,不一而足。有规律的体育锻炼、认知参与、均衡饮食和社交互动是保持大脑健康的关键支柱。与此同时,针对注意力缺失症关键病理机制的疗法,如淀粉样蛋白-β积累、tau异常、神经炎症、线粒体功能障碍和突触丧失等,为治疗提供了潜在的突破口。此外,基因治疗、干细胞移植和新型给药系统等前沿创新技术正在成为改变抗击AD的潜在手段。本综述通过探讨衰老机制与阿尔茨海默病发病机制之间的联系,对抗衰老干预措施的最新研究及其在预防和治疗阿尔茨海默病(AD)方面的潜力进行了批判性评估。它全面分析了成熟的和新兴的策略,同时还找出了当前知识中的关键差距,以指导未来的研究工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular and Cellular Foundations of Aging of the Brain: Anti-aging Strategies in Alzheimer's Disease.

Alzheimer's disease (AD) is a condition characterized by the gradual degeneration of the nervous system that poses significant challenges to cognitive function and overall mental health. Given the increasing global life expectancy, there is an urgent need for effective strategies to prevent and manage Alzheimer's disease, with a particular focus on anti-aging interventions. Recent scientific advancements have unveiled several promising strategies for combating Alzheimer's disease (AD), ranging from lifestyle interventions to cutting-edge pharmacological treatments and therapies targeting the underlying biological processes of aging and AD. Regular physical exercise, cognitive engagement, a balanced diet, and social interaction serve as key pillars in maintaining brain health. At the same time, therapies target key pathological mechanisms of AD, such as amyloid-beta accumulation, tau abnormalities, neuroinflammation, mitochondrial dysfunction, and synaptic loss, offering potential breakthroughs in treatment. Moreover, cutting-edge innovations such as gene therapy, stem cell transplantation, and novel drug delivery systems are emerging as potential game-changers in the fight against AD. This review critically evaluates the latest research on anti-aging interventions and their potential in preventing and treating Alzheimer's disease (AD) by exploring the connections between aging mechanisms and AD pathogenesis. It provides a comprehensive analysis of both well-established and emerging strategies, while also identifying key gaps in current knowledge to guide future research efforts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
137
审稿时长
4-8 weeks
期刊介绍: Cellular and Molecular Neurobiology publishes original research concerned with the analysis of neuronal and brain function at the cellular and subcellular levels. The journal offers timely, peer-reviewed articles that describe anatomic, genetic, physiologic, pharmacologic, and biochemical approaches to the study of neuronal function and the analysis of elementary mechanisms. Studies are presented on isolated mammalian tissues and intact animals, with investigations aimed at the molecular mechanisms or neuronal responses at the level of single cells. Cellular and Molecular Neurobiology also presents studies of the effects of neurons on other organ systems, such as analysis of the electrical or biochemical response to neurotransmitters or neurohormones on smooth muscle or gland cells.
期刊最新文献
Correction: Myosin IIA Regulated Tight Junction in Oxygen Glucose-Deprived Brain Endothelial Cells Via Activation of TLR4/PI3K/Akt/JNK1/2/14-3-3ε/NF-κB/MMP9 Signal Transduction Pathway. Correction: Docosahexaenoic Acid Alleviates Oxidative Stress-Based Apoptosis Via Improving Mitochondrial Dynamics in Early Brain Injury After Subarachnoid Hemorrhage. AMPA Receptors in Synaptic Plasticity, Memory Function, and Brain Diseases. Genetically Predicted Leucine Level Mediates Association Between CD4/CD8br T Lymphocytes and Insomnia. Aging and MPTP Sensitivity Depend on Molecular and Ultrastructural Signatures of Astroglia and Microglia in Mice Substantia Nigra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1