{"title":"评估水合吗啉作为一种肾脏保护剂对甲氨蝶呤诱导的肾毒性大鼠的作用。","authors":"Ekrem Darendelioğlu, Sevda Sağ, Cuneyt Caglayan","doi":"10.1080/01480545.2024.2429616","DOIUrl":null,"url":null,"abstract":"<p><p>Methotrexate (MTX) is a generally applied chemotherapeutic medicine in most cancers treatment. Morin hydrate, a robust antioxidant, is a secondary metabolite observed in numerous plants, along with figs, white mulberries, and others. The hypothesis of this study is that morin hydrate can effectively reduce MTX-induced kidney injury in rats by increasing antioxidant enzyme activity and inhibiting apoptotic processes. This study, 35 male Wistar albino rats were used, and five different experimental groups, each consisting of 7 rats were established. Group 1 served as the control group while Group 2 received morin exclusively via oral administration (at a dose of 100 mg/kg). Group 3, however, was administered MTX exclusively (at a dose of 20 mg/kg). Group 4 received a combination of MTX (20 mg/kg) and morin (50 mg/kg), and Group 5 received a combination of MTX (20 mg/kg) and morin (100 mg/kg). The MTX group showed a significant increase in kidney biomarkers, including serum urea, creatinine, and the lipid peroxidation biomarker MDA, compared to the control group, along with a notable decrease in antioxidant enzyme activity (SOD, CAT, GPx) and GSH levels. Furthermore, MTX notably decreased the expression of procas-3, Bcl-2, procas-9, and procas-8 while concurrently increasing the expression of apoptotic genes such as CYT-C and Bax. Co-administration of morin hydrate with MTX at doses of 50 and 100 mg/kg effectively managed oxidative damage levels and apoptotic markers, demonstrating antioxidant and anti-apoptotic properties. Notably, the 100 mg/kg dose provided more robust protection than the 50 mg/kg dose, indicating a dose-dependent efficacy. This investigation thus supports the conclusion that morin hydrate, at both dosage levels, effectively mitigates MTX-induced renal damage.</p>","PeriodicalId":11333,"journal":{"name":"Drug and Chemical Toxicology","volume":" ","pages":"1-8"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of morin hydrate as a renal protective agent in rats subjected to methotrexate-induced nephrotoxicity.\",\"authors\":\"Ekrem Darendelioğlu, Sevda Sağ, Cuneyt Caglayan\",\"doi\":\"10.1080/01480545.2024.2429616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Methotrexate (MTX) is a generally applied chemotherapeutic medicine in most cancers treatment. Morin hydrate, a robust antioxidant, is a secondary metabolite observed in numerous plants, along with figs, white mulberries, and others. The hypothesis of this study is that morin hydrate can effectively reduce MTX-induced kidney injury in rats by increasing antioxidant enzyme activity and inhibiting apoptotic processes. This study, 35 male Wistar albino rats were used, and five different experimental groups, each consisting of 7 rats were established. Group 1 served as the control group while Group 2 received morin exclusively via oral administration (at a dose of 100 mg/kg). Group 3, however, was administered MTX exclusively (at a dose of 20 mg/kg). Group 4 received a combination of MTX (20 mg/kg) and morin (50 mg/kg), and Group 5 received a combination of MTX (20 mg/kg) and morin (100 mg/kg). The MTX group showed a significant increase in kidney biomarkers, including serum urea, creatinine, and the lipid peroxidation biomarker MDA, compared to the control group, along with a notable decrease in antioxidant enzyme activity (SOD, CAT, GPx) and GSH levels. Furthermore, MTX notably decreased the expression of procas-3, Bcl-2, procas-9, and procas-8 while concurrently increasing the expression of apoptotic genes such as CYT-C and Bax. Co-administration of morin hydrate with MTX at doses of 50 and 100 mg/kg effectively managed oxidative damage levels and apoptotic markers, demonstrating antioxidant and anti-apoptotic properties. Notably, the 100 mg/kg dose provided more robust protection than the 50 mg/kg dose, indicating a dose-dependent efficacy. This investigation thus supports the conclusion that morin hydrate, at both dosage levels, effectively mitigates MTX-induced renal damage.</p>\",\"PeriodicalId\":11333,\"journal\":{\"name\":\"Drug and Chemical Toxicology\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug and Chemical Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01480545.2024.2429616\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug and Chemical Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01480545.2024.2429616","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Assessment of morin hydrate as a renal protective agent in rats subjected to methotrexate-induced nephrotoxicity.
Methotrexate (MTX) is a generally applied chemotherapeutic medicine in most cancers treatment. Morin hydrate, a robust antioxidant, is a secondary metabolite observed in numerous plants, along with figs, white mulberries, and others. The hypothesis of this study is that morin hydrate can effectively reduce MTX-induced kidney injury in rats by increasing antioxidant enzyme activity and inhibiting apoptotic processes. This study, 35 male Wistar albino rats were used, and five different experimental groups, each consisting of 7 rats were established. Group 1 served as the control group while Group 2 received morin exclusively via oral administration (at a dose of 100 mg/kg). Group 3, however, was administered MTX exclusively (at a dose of 20 mg/kg). Group 4 received a combination of MTX (20 mg/kg) and morin (50 mg/kg), and Group 5 received a combination of MTX (20 mg/kg) and morin (100 mg/kg). The MTX group showed a significant increase in kidney biomarkers, including serum urea, creatinine, and the lipid peroxidation biomarker MDA, compared to the control group, along with a notable decrease in antioxidant enzyme activity (SOD, CAT, GPx) and GSH levels. Furthermore, MTX notably decreased the expression of procas-3, Bcl-2, procas-9, and procas-8 while concurrently increasing the expression of apoptotic genes such as CYT-C and Bax. Co-administration of morin hydrate with MTX at doses of 50 and 100 mg/kg effectively managed oxidative damage levels and apoptotic markers, demonstrating antioxidant and anti-apoptotic properties. Notably, the 100 mg/kg dose provided more robust protection than the 50 mg/kg dose, indicating a dose-dependent efficacy. This investigation thus supports the conclusion that morin hydrate, at both dosage levels, effectively mitigates MTX-induced renal damage.
期刊介绍:
Drug and Chemical Toxicology publishes full-length research papers, review articles and short communications that encompass a broad spectrum of toxicological data surrounding risk assessment and harmful exposure. Manuscripts are considered according to their relevance to the journal.
Topics include both descriptive and mechanics research that illustrates the risk assessment implications of exposure to toxic agents. Examples of suitable topics include toxicological studies, which are structural examinations on the effects of dose, metabolism, and statistical or mechanism-based approaches to risk assessment. New findings and methods, along with safety evaluations, are also acceptable. Special issues may be reserved to publish symposium summaries, reviews in toxicology, and overviews of the practical interpretation and application of toxicological data.