Yiyang Wang, Weijia Wu, Fanqi Zeng, Xiangyuan Meng, Mei Peng, Juan Wang, Zeyu Chen, Wenfeng Liu
{"title":"运动介导的犬尿氨酸通路代谢在阿尔茨海默病的微生物-肠-脑轴中的作用。","authors":"Yiyang Wang, Weijia Wu, Fanqi Zeng, Xiangyuan Meng, Mei Peng, Juan Wang, Zeyu Chen, Wenfeng Liu","doi":"10.1016/j.expneurol.2024.115070","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the role of the microbiome-gut-brain axis in the pathogenesis of Alzheimer's disease (AD) has garnered increasing attention. Specifically, tryptophan metabolism via the kynurenine pathway (KP) plays a crucial regulatory role in this axis. This study reviews how exercise regulates the microbiome-gut-brain axis by influencing kynurenine pathway metabolism, thereby exerting resistance against AD. This paper also discusses how exercise positively impacts AD via the microbiome-gut-brain axis by modulating the endocrine, autonomic nervous, and immune systems. Although the specific mechanisms are not fully understood, research indicates that exercise may optimize tryptophan metabolism by promoting the growth of beneficial microbiota and inhibiting harmful microbiota, producing substances that are beneficial to the nervous system and combating AD. The aim of this review is to provide new perspectives and potential intervention strategies for the prevention and treatment of AD by exploring the links between exercise, KP and the gut-brain axis.</p>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":" ","pages":"115070"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of kynurenine pathway metabolism mediated by exercise in the microbial-gut-brain axis in Alzheimer's disease.\",\"authors\":\"Yiyang Wang, Weijia Wu, Fanqi Zeng, Xiangyuan Meng, Mei Peng, Juan Wang, Zeyu Chen, Wenfeng Liu\",\"doi\":\"10.1016/j.expneurol.2024.115070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, the role of the microbiome-gut-brain axis in the pathogenesis of Alzheimer's disease (AD) has garnered increasing attention. Specifically, tryptophan metabolism via the kynurenine pathway (KP) plays a crucial regulatory role in this axis. This study reviews how exercise regulates the microbiome-gut-brain axis by influencing kynurenine pathway metabolism, thereby exerting resistance against AD. This paper also discusses how exercise positively impacts AD via the microbiome-gut-brain axis by modulating the endocrine, autonomic nervous, and immune systems. Although the specific mechanisms are not fully understood, research indicates that exercise may optimize tryptophan metabolism by promoting the growth of beneficial microbiota and inhibiting harmful microbiota, producing substances that are beneficial to the nervous system and combating AD. The aim of this review is to provide new perspectives and potential intervention strategies for the prevention and treatment of AD by exploring the links between exercise, KP and the gut-brain axis.</p>\",\"PeriodicalId\":12246,\"journal\":{\"name\":\"Experimental Neurology\",\"volume\":\" \",\"pages\":\"115070\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.expneurol.2024.115070\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.expneurol.2024.115070","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The role of kynurenine pathway metabolism mediated by exercise in the microbial-gut-brain axis in Alzheimer's disease.
In recent years, the role of the microbiome-gut-brain axis in the pathogenesis of Alzheimer's disease (AD) has garnered increasing attention. Specifically, tryptophan metabolism via the kynurenine pathway (KP) plays a crucial regulatory role in this axis. This study reviews how exercise regulates the microbiome-gut-brain axis by influencing kynurenine pathway metabolism, thereby exerting resistance against AD. This paper also discusses how exercise positively impacts AD via the microbiome-gut-brain axis by modulating the endocrine, autonomic nervous, and immune systems. Although the specific mechanisms are not fully understood, research indicates that exercise may optimize tryptophan metabolism by promoting the growth of beneficial microbiota and inhibiting harmful microbiota, producing substances that are beneficial to the nervous system and combating AD. The aim of this review is to provide new perspectives and potential intervention strategies for the prevention and treatment of AD by exploring the links between exercise, KP and the gut-brain axis.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.