大肠杆菌生物合成 N-甲基羟色胺的代谢工程。

IF 6.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic engineering Pub Date : 2024-11-25 DOI:10.1016/j.ymben.2024.11.011
Qingchen Li , Chenxi Li , Jie Zhong , Yukun Wang , Qinghua Yang , Bingmei Wang , Wenjin He , Jianzhong Huang , Shengyuan Lin , Feng Qi
{"title":"大肠杆菌生物合成 N-甲基羟色胺的代谢工程。","authors":"Qingchen Li ,&nbsp;Chenxi Li ,&nbsp;Jie Zhong ,&nbsp;Yukun Wang ,&nbsp;Qinghua Yang ,&nbsp;Bingmei Wang ,&nbsp;Wenjin He ,&nbsp;Jianzhong Huang ,&nbsp;Shengyuan Lin ,&nbsp;Feng Qi","doi":"10.1016/j.ymben.2024.11.011","DOIUrl":null,"url":null,"abstract":"<div><div>N-methylserotonin (NMS) is a valuable indole alkaloid with therapeutic potential for psychiatric and neurological disorders, and it is used in health foods, cosmetics, and weight loss supplements. However, environmental challenges and low reaction efficiencies significantly hinder cost-effective, large-scale production of NMS in plants or through chemical synthesis. Herein, we have successfully engineered <em>Escherichia coli</em> strains to enhance NMS production from L-tryptophan using whole-cell catalysis. We developed multiple biosynthesis pathways incorporating modules for serotonin (5-hydroxytryptamine, 5-HT), tetrahydromonapterin (MH₄), and S-adenosylmethionine (SAM) synthesis. To enhance MH₄ availability, we employed a high-activity <em>Bacillus subtilis</em> FolE and minimized carbon flux loss through targeted gene knockouts in competitive metabolic pathways, improving 5-HT production. Additionally, we constructed a comprehensive SAM biosynthesis module to facilitate transmethylation by a selected N-methyltransferase fused with ProS2. These engineered modules were coexpressed in two plasmids within the optimized strain NMS-19, producing 128.6 mg/L of NMS in a 5-L bioreactor using fed-batch cultivation—a 92-fold increase over the original strain. This study introduces a viable strategy for NMS production and provides insights into the biosynthesis of SAM-dependent methylated tryptamine derivatives.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"87 ","pages":"Pages 49-59"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic engineering of Escherichia coli for N-methylserotonin biosynthesis\",\"authors\":\"Qingchen Li ,&nbsp;Chenxi Li ,&nbsp;Jie Zhong ,&nbsp;Yukun Wang ,&nbsp;Qinghua Yang ,&nbsp;Bingmei Wang ,&nbsp;Wenjin He ,&nbsp;Jianzhong Huang ,&nbsp;Shengyuan Lin ,&nbsp;Feng Qi\",\"doi\":\"10.1016/j.ymben.2024.11.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>N-methylserotonin (NMS) is a valuable indole alkaloid with therapeutic potential for psychiatric and neurological disorders, and it is used in health foods, cosmetics, and weight loss supplements. However, environmental challenges and low reaction efficiencies significantly hinder cost-effective, large-scale production of NMS in plants or through chemical synthesis. Herein, we have successfully engineered <em>Escherichia coli</em> strains to enhance NMS production from L-tryptophan using whole-cell catalysis. We developed multiple biosynthesis pathways incorporating modules for serotonin (5-hydroxytryptamine, 5-HT), tetrahydromonapterin (MH₄), and S-adenosylmethionine (SAM) synthesis. To enhance MH₄ availability, we employed a high-activity <em>Bacillus subtilis</em> FolE and minimized carbon flux loss through targeted gene knockouts in competitive metabolic pathways, improving 5-HT production. Additionally, we constructed a comprehensive SAM biosynthesis module to facilitate transmethylation by a selected N-methyltransferase fused with ProS2. These engineered modules were coexpressed in two plasmids within the optimized strain NMS-19, producing 128.6 mg/L of NMS in a 5-L bioreactor using fed-batch cultivation—a 92-fold increase over the original strain. This study introduces a viable strategy for NMS production and provides insights into the biosynthesis of SAM-dependent methylated tryptamine derivatives.</div></div>\",\"PeriodicalId\":18483,\"journal\":{\"name\":\"Metabolic engineering\",\"volume\":\"87 \",\"pages\":\"Pages 49-59\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096717624001538\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624001538","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

N- 甲基羟色胺(NMS)是一种宝贵的吲哚生物碱,具有治疗精神和神经疾病的潜力,并被用于保健食品、化妆品和减肥补充剂。然而,环境挑战和低反应效率极大地阻碍了在植物中或通过化学合成大规模生产 NMS 的成本效益。在此,我们成功改造了大肠杆菌菌株,利用全细胞催化技术提高了 L-色氨酸的 NMS 产量。我们开发了多种生物合成途径,其中包括血清素(5-羟色胺,5-HT)、四氢色氨酸(MH₄)和 S-腺苷蛋氨酸(SAM)合成模块。为了提高 MH₄的可用性,我们采用了高活性枯草芽孢杆菌 FolE,并通过敲除竞争性代谢途径中的定向基因,最大限度地减少碳通量损失,从而提高了 5-HT 的产量。此外,我们还构建了一个全面的 SAM 生物合成模块,通过与 ProS2 融合的精选 N-甲基转移酶促进转甲基化。这些工程化模块在优化菌株 NMS-19 的两个质粒中共同表达,在 5 升生物反应器中采用喂料批量培养法生产 128.6 mg/L 的 NMS,比原始菌株提高了 92 倍。这项研究提出了一种可行的 NMS 生产策略,并为 SAM 依赖性甲基化色胺衍生物的生物合成提供了深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metabolic engineering of Escherichia coli for N-methylserotonin biosynthesis
N-methylserotonin (NMS) is a valuable indole alkaloid with therapeutic potential for psychiatric and neurological disorders, and it is used in health foods, cosmetics, and weight loss supplements. However, environmental challenges and low reaction efficiencies significantly hinder cost-effective, large-scale production of NMS in plants or through chemical synthesis. Herein, we have successfully engineered Escherichia coli strains to enhance NMS production from L-tryptophan using whole-cell catalysis. We developed multiple biosynthesis pathways incorporating modules for serotonin (5-hydroxytryptamine, 5-HT), tetrahydromonapterin (MH₄), and S-adenosylmethionine (SAM) synthesis. To enhance MH₄ availability, we employed a high-activity Bacillus subtilis FolE and minimized carbon flux loss through targeted gene knockouts in competitive metabolic pathways, improving 5-HT production. Additionally, we constructed a comprehensive SAM biosynthesis module to facilitate transmethylation by a selected N-methyltransferase fused with ProS2. These engineered modules were coexpressed in two plasmids within the optimized strain NMS-19, producing 128.6 mg/L of NMS in a 5-L bioreactor using fed-batch cultivation—a 92-fold increase over the original strain. This study introduces a viable strategy for NMS production and provides insights into the biosynthesis of SAM-dependent methylated tryptamine derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolic engineering
Metabolic engineering 工程技术-生物工程与应用微生物
CiteScore
15.60
自引率
6.00%
发文量
140
审稿时长
44 days
期刊介绍: Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.
期刊最新文献
Prenol production in a microbial host via the "Repass" Pathways. Exploring and increased acetate biosynthesis in Synechocystis PCC 6803 through insertion of a heterologous phosphoketolase and overexpressing phosphotransacetylase. Introduction of acetyl-phosphate bypass and increased culture temperatures enhanced growth-coupled poly-hydroxybutyrate production in the marine cyanobacterium Synechococcus sp. PCC7002. Biosynthesis of 10-Hydroxy-2-Decenoic Acid in Escherichia coli. Unleashing the innate ability of Escherichia coli to produce D-Allose.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1