设计稳定性和活性更强的蛋白质的通用温度指导语言模型。

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-11-29 Epub Date: 2024-11-27 DOI:10.1126/sciadv.adr2641
Fan Jiang, Mingchen Li, Jiajun Dong, Yuanxi Yu, Xinyu Sun, Banghao Wu, Jin Huang, Liqi Kang, Yufeng Pei, Liang Zhang, Shaojie Wang, Wenxue Xu, Jingyao Xin, Wanli Ouyang, Guisheng Fan, Lirong Zheng, Yang Tan, Zhiqiang Hu, Yi Xiong, Yan Feng, Guangyu Yang, Qian Liu, Jie Song, Jia Liu, Liang Hong, Pan Tan
{"title":"设计稳定性和活性更强的蛋白质的通用温度指导语言模型。","authors":"Fan Jiang, Mingchen Li, Jiajun Dong, Yuanxi Yu, Xinyu Sun, Banghao Wu, Jin Huang, Liqi Kang, Yufeng Pei, Liang Zhang, Shaojie Wang, Wenxue Xu, Jingyao Xin, Wanli Ouyang, Guisheng Fan, Lirong Zheng, Yang Tan, Zhiqiang Hu, Yi Xiong, Yan Feng, Guangyu Yang, Qian Liu, Jie Song, Jia Liu, Liang Hong, Pan Tan","doi":"10.1126/sciadv.adr2641","DOIUrl":null,"url":null,"abstract":"<p><p>Designing protein mutants with both high stability and activity is a critical yet challenging task in protein engineering. Here, we introduce PRIME, a deep learning model, which can suggest protein mutants with improved stability and activity without any prior experimental mutagenesis data for the specified protein. Leveraging temperature-aware language modeling, PRIME demonstrated superior predictive ability compared to current state-of-the-art models on the public mutagenesis dataset across 283 protein assays. Furthermore, we validated PRIME's predictions on five proteins, examining the impact of the top 30 to 45 single-site mutations on various protein properties, including thermal stability, antigen-antibody binding affinity, and the ability to polymerize nonnatural nucleic acid or resilience to extreme alkaline conditions. More than 30% of PRIME-recommended mutants exhibited superior performance compared to their premutation counterparts across all proteins and desired properties. We developed an efficient and effective method based on PRIME to rapidly obtain multisite mutants with enhanced activity and stability. Hence, PRIME demonstrates broad applicability in protein engineering.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 48","pages":"eadr2641"},"PeriodicalIF":11.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601203/pdf/","citationCount":"0","resultStr":"{\"title\":\"A general temperature-guided language model to design proteins of enhanced stability and activity.\",\"authors\":\"Fan Jiang, Mingchen Li, Jiajun Dong, Yuanxi Yu, Xinyu Sun, Banghao Wu, Jin Huang, Liqi Kang, Yufeng Pei, Liang Zhang, Shaojie Wang, Wenxue Xu, Jingyao Xin, Wanli Ouyang, Guisheng Fan, Lirong Zheng, Yang Tan, Zhiqiang Hu, Yi Xiong, Yan Feng, Guangyu Yang, Qian Liu, Jie Song, Jia Liu, Liang Hong, Pan Tan\",\"doi\":\"10.1126/sciadv.adr2641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Designing protein mutants with both high stability and activity is a critical yet challenging task in protein engineering. Here, we introduce PRIME, a deep learning model, which can suggest protein mutants with improved stability and activity without any prior experimental mutagenesis data for the specified protein. Leveraging temperature-aware language modeling, PRIME demonstrated superior predictive ability compared to current state-of-the-art models on the public mutagenesis dataset across 283 protein assays. Furthermore, we validated PRIME's predictions on five proteins, examining the impact of the top 30 to 45 single-site mutations on various protein properties, including thermal stability, antigen-antibody binding affinity, and the ability to polymerize nonnatural nucleic acid or resilience to extreme alkaline conditions. More than 30% of PRIME-recommended mutants exhibited superior performance compared to their premutation counterparts across all proteins and desired properties. We developed an efficient and effective method based on PRIME to rapidly obtain multisite mutants with enhanced activity and stability. Hence, PRIME demonstrates broad applicability in protein engineering.</p>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"10 48\",\"pages\":\"eadr2641\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601203/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/sciadv.adr2641\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr2641","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

设计具有高稳定性和高活性的蛋白质突变体是蛋白质工程中一项关键而又具有挑战性的任务。在这里,我们介绍了一种深度学习模型 PRIME,它可以在没有任何特定蛋白质诱变实验数据的情况下,推荐具有更高的稳定性和活性的蛋白质突变体。利用温度感知语言建模,PRIME 在涉及 283 种蛋白质检测的公共诱变数据集上展示了优于当前最先进模型的预测能力。此外,我们还在五个蛋白质上验证了 PRIME 的预测结果,考察了前 30 到 45 个单位突变对蛋白质各种特性的影响,包括热稳定性、抗原抗体结合亲和力、聚合非天然核酸的能力或对极端碱性条件的适应性。在 PRIME 推荐的突变体中,超过 30% 的突变体与突变前的突变体相比,在所有蛋白质和所需特性方面都表现出更优越的性能。我们开发了一种基于 PRIME 的高效方法,可快速获得具有更高活性和稳定性的多位点突变体。因此,PRIME 在蛋白质工程中具有广泛的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A general temperature-guided language model to design proteins of enhanced stability and activity.

Designing protein mutants with both high stability and activity is a critical yet challenging task in protein engineering. Here, we introduce PRIME, a deep learning model, which can suggest protein mutants with improved stability and activity without any prior experimental mutagenesis data for the specified protein. Leveraging temperature-aware language modeling, PRIME demonstrated superior predictive ability compared to current state-of-the-art models on the public mutagenesis dataset across 283 protein assays. Furthermore, we validated PRIME's predictions on five proteins, examining the impact of the top 30 to 45 single-site mutations on various protein properties, including thermal stability, antigen-antibody binding affinity, and the ability to polymerize nonnatural nucleic acid or resilience to extreme alkaline conditions. More than 30% of PRIME-recommended mutants exhibited superior performance compared to their premutation counterparts across all proteins and desired properties. We developed an efficient and effective method based on PRIME to rapidly obtain multisite mutants with enhanced activity and stability. Hence, PRIME demonstrates broad applicability in protein engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
A general temperature-guided language model to design proteins of enhanced stability and activity. A universal strategy for decoupling stiffness and extensibility of polymer networks. Cesarean delivery and blood DNA methylation at birth and childhood: Meta-analysis in the Pregnancy and Childhood Epigenetics Consortium. Effectively tuning the quantum Griffiths phase by controllable quantum fluctuations. Hormone response elements for the thyroid receptor-α include specific distal 5'-flanking DNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1