具有出色操纵性和高能效的可控非线性双稳态 "鱼尾 "助推机器人游泳器

Xu Chao, Imran Hameed, David Navarro-Alarcon, Xingjian Jing
{"title":"具有出色操纵性和高能效的可控非线性双稳态 \"鱼尾 \"助推机器人游泳器","authors":"Xu Chao, Imran Hameed, David Navarro-Alarcon, Xingjian Jing","doi":"10.1089/soro.2024.0038","DOIUrl":null,"url":null,"abstract":"<p><p>High maneuverability and energy efficiency are crucial for underwater robots to perform tasks in engineering practice. Natural evolution empowers aquatic species with skills of agile and efficient swimming, which can be deliberately employed for better robotic swimmers. A critical issue for efficient robotic swimmers is the design and control of an appropriate propulsion system. This study, therefore, presents a completely different realization of a highly flexible and controllable bistable nonlinear mechanism as a \"fishtail.\" The mechanism combines an elastic spine and a lightweight parallel linkage mechanism. Through active control of the endpoint of the elastic spine, the compliant tail can be empowered with exceptional controllability and tunable bistability for a much more efficient and also the first-ever accurately controlled bistable elastic propulsion system. Experimental results demonstrate that the new bistable fishtail can achieve a faster speed of its size (up to an average speed of 0.8 m·s<sup>-1</sup>) with an associated higher energy efficiency (corresponding cost of transport as low as 9 J·m<sup>-1</sup>·kg<sup>-1</sup>), and greater maneuverability (with an average turning speed of up to 107°/s at a much smaller turning radius of 0.31 body length). This study will definitely provide an efficient controllable and feasible approach to the design of nonlinear compliant propulsion systems for underwater vehicles by exploring nonlinear dynamics.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Controllable Nonlinear Bistable \\\"Fishtail\\\" Boosting Robotic Swimmer with Excellent Maneuverability and High Energy Efficiency.\",\"authors\":\"Xu Chao, Imran Hameed, David Navarro-Alarcon, Xingjian Jing\",\"doi\":\"10.1089/soro.2024.0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High maneuverability and energy efficiency are crucial for underwater robots to perform tasks in engineering practice. Natural evolution empowers aquatic species with skills of agile and efficient swimming, which can be deliberately employed for better robotic swimmers. A critical issue for efficient robotic swimmers is the design and control of an appropriate propulsion system. This study, therefore, presents a completely different realization of a highly flexible and controllable bistable nonlinear mechanism as a \\\"fishtail.\\\" The mechanism combines an elastic spine and a lightweight parallel linkage mechanism. Through active control of the endpoint of the elastic spine, the compliant tail can be empowered with exceptional controllability and tunable bistability for a much more efficient and also the first-ever accurately controlled bistable elastic propulsion system. Experimental results demonstrate that the new bistable fishtail can achieve a faster speed of its size (up to an average speed of 0.8 m·s<sup>-1</sup>) with an associated higher energy efficiency (corresponding cost of transport as low as 9 J·m<sup>-1</sup>·kg<sup>-1</sup>), and greater maneuverability (with an average turning speed of up to 107°/s at a much smaller turning radius of 0.31 body length). This study will definitely provide an efficient controllable and feasible approach to the design of nonlinear compliant propulsion systems for underwater vehicles by exploring nonlinear dynamics.</p>\",\"PeriodicalId\":94210,\"journal\":{\"name\":\"Soft robotics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2024.0038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2024.0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高机动性和高能效是水下机器人在工程实践中执行任务的关键。自然进化赋予了水生物种敏捷、高效的游泳技能,我们可以有意识地利用这些技能来制造更好的游泳机器人。高效机器人游泳的一个关键问题是设计和控制适当的推进系统。因此,本研究提出了一种完全不同的高度灵活和可控的双稳态非线性机构--"鱼尾"。该机构结合了弹性脊柱和轻量级平行连杆机构。通过对弹性脊柱端点的主动控制,顺应性尾翼可以获得卓越的可控性和可调双稳态性,从而实现更高效的双稳态弹性推进系统,这也是有史以来第一个精确控制的双稳态弹性推进系统。实验结果表明,新的双稳态鱼尾可以达到与其尺寸相当的更快速度(平均速度可达 0.8 m-s-1),同时具有更高的能效(相应的运输成本低至 9 J-m-1-kg-1)和更强的机动性(在 0.31 个体长的更小转弯半径内,平均转弯速度可达 107°/s)。这项研究通过探索非线性动力学,必将为水下航行器非线性顺应推进系统的设计提供一种高效可控的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Controllable Nonlinear Bistable "Fishtail" Boosting Robotic Swimmer with Excellent Maneuverability and High Energy Efficiency.

High maneuverability and energy efficiency are crucial for underwater robots to perform tasks in engineering practice. Natural evolution empowers aquatic species with skills of agile and efficient swimming, which can be deliberately employed for better robotic swimmers. A critical issue for efficient robotic swimmers is the design and control of an appropriate propulsion system. This study, therefore, presents a completely different realization of a highly flexible and controllable bistable nonlinear mechanism as a "fishtail." The mechanism combines an elastic spine and a lightweight parallel linkage mechanism. Through active control of the endpoint of the elastic spine, the compliant tail can be empowered with exceptional controllability and tunable bistability for a much more efficient and also the first-ever accurately controlled bistable elastic propulsion system. Experimental results demonstrate that the new bistable fishtail can achieve a faster speed of its size (up to an average speed of 0.8 m·s-1) with an associated higher energy efficiency (corresponding cost of transport as low as 9 J·m-1·kg-1), and greater maneuverability (with an average turning speed of up to 107°/s at a much smaller turning radius of 0.31 body length). This study will definitely provide an efficient controllable and feasible approach to the design of nonlinear compliant propulsion systems for underwater vehicles by exploring nonlinear dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft Robotic Heart Formed with a Myocardial Band for Cardiac Functions. ZodiAq: An Isotropic Flagella-Inspired Soft Underwater Drone for Safe Marine Exploration. Reprogrammable Flexible Piezoelectric Actuator Arrays with a High Degree of Freedom for Shape Morphing and Locomotion. Small-Scale Soft Terrestrial Robot with Electrically Driven Multi-Modal Locomotion Capability. Soft Robotics in Upper Limb Neurorehabilitation and Assistance: Current Clinical Evidence and Recommendations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1