Marco Antônio Peixoto, Rodrigo Rampazo Amadeu, Leonardo Lopes Bhering, Luís Felipe V Ferrão, Patrício R Munoz, Márcio F R Resende
{"title":"SimpleMating:利用基因组选择预测和优化育种杂交的 R 软件包。","authors":"Marco Antônio Peixoto, Rodrigo Rampazo Amadeu, Leonardo Lopes Bhering, Luís Felipe V Ferrão, Patrício R Munoz, Márcio F R Resende","doi":"10.1002/tpg2.20533","DOIUrl":null,"url":null,"abstract":"<p><p>Selecting parents and crosses is a critical step for a successful breeding program. The ability to design crosses with high means that will maintain genetic variation in the population is the goal for long-term applications. Herein, we describe a new computational package for mate allocation in a breeding program. SimpleMating is a flexible and open-source R package originally designed to predict and optimize breeding crosses in crops with different reproductive systems and breeding designs. Divided into modules, SimpleMating first estimates the cross performance (criterion), such as mid-parental value, cross total genetic value, and/or usefulness of a set of crosses. The second module implements an optimization algorithm to maximize a target criterion while minimizing next-generation inbreeding. The software is flexible, enabling users to specify the desired number of crosses, set maximum and minimum crosses per parent, and define the maximum allowable parent relationship for creating crosses. As an outcome, SimpleMating generates a mating plan from the target parental population using single or multi-trait criteria. For example, we implemented and tested SimpleMating in a simulated maize breeding program obtained through stochastic simulations. The crosses designed via SimpleMating showed a large genetic mean over time (up to 22% more genetic gain than conventional genomic selection programs, with lesser loss of genetic diversity over time), supporting the use of this tool, as well as the use of data-driven decisions in breeding programs.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20533"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726409/pdf/","citationCount":"0","resultStr":"{\"title\":\"SimpleMating: R-package for prediction and optimization of breeding crosses using genomic selection.\",\"authors\":\"Marco Antônio Peixoto, Rodrigo Rampazo Amadeu, Leonardo Lopes Bhering, Luís Felipe V Ferrão, Patrício R Munoz, Márcio F R Resende\",\"doi\":\"10.1002/tpg2.20533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Selecting parents and crosses is a critical step for a successful breeding program. The ability to design crosses with high means that will maintain genetic variation in the population is the goal for long-term applications. Herein, we describe a new computational package for mate allocation in a breeding program. SimpleMating is a flexible and open-source R package originally designed to predict and optimize breeding crosses in crops with different reproductive systems and breeding designs. Divided into modules, SimpleMating first estimates the cross performance (criterion), such as mid-parental value, cross total genetic value, and/or usefulness of a set of crosses. The second module implements an optimization algorithm to maximize a target criterion while minimizing next-generation inbreeding. The software is flexible, enabling users to specify the desired number of crosses, set maximum and minimum crosses per parent, and define the maximum allowable parent relationship for creating crosses. As an outcome, SimpleMating generates a mating plan from the target parental population using single or multi-trait criteria. For example, we implemented and tested SimpleMating in a simulated maize breeding program obtained through stochastic simulations. The crosses designed via SimpleMating showed a large genetic mean over time (up to 22% more genetic gain than conventional genomic selection programs, with lesser loss of genetic diversity over time), supporting the use of this tool, as well as the use of data-driven decisions in breeding programs.</p>\",\"PeriodicalId\":49002,\"journal\":{\"name\":\"Plant Genome\",\"volume\":\" \",\"pages\":\"e20533\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726409/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/tpg2.20533\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20533","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
选择亲本和杂交种是成功育种计划的关键步骤。长期应用的目标是能够设计出维持种群遗传变异的高手段杂交。在此,我们将介绍一个用于育种计划中配偶分配的新计算软件包。SimpleMating 是一个灵活的开源 R 软件包,最初设计用于预测和优化具有不同生殖系统和育种设计的作物的杂交育种。SimpleMating 分成几个模块,首先估算杂交性能(标准),如中间亲本值、杂交总遗传值和/或一组杂交的有用性。第二个模块采用优化算法,在最大限度地提高目标标准的同时,最大限度地降低下一代近交率。该软件非常灵活,用户可以指定所需的杂交次数,设置每个亲本的最大和最小杂交次数,并定义创建杂交的最大允许亲本关系。其结果是,SimpleMating 会使用单性状或多性状标准从目标亲本群体中生成交配计划。例如,我们在通过随机模拟获得的模拟玉米育种计划中实施并测试了 SimpleMating。通过 SimpleMating 设计的杂交随着时间的推移显示出较大的遗传平均值(与传统的基因组选择程序相比,遗传增益高达 22%,随着时间的推移,遗传多样性的损失较小),支持使用这一工具,以及在育种计划中使用数据驱动决策。
SimpleMating: R-package for prediction and optimization of breeding crosses using genomic selection.
Selecting parents and crosses is a critical step for a successful breeding program. The ability to design crosses with high means that will maintain genetic variation in the population is the goal for long-term applications. Herein, we describe a new computational package for mate allocation in a breeding program. SimpleMating is a flexible and open-source R package originally designed to predict and optimize breeding crosses in crops with different reproductive systems and breeding designs. Divided into modules, SimpleMating first estimates the cross performance (criterion), such as mid-parental value, cross total genetic value, and/or usefulness of a set of crosses. The second module implements an optimization algorithm to maximize a target criterion while minimizing next-generation inbreeding. The software is flexible, enabling users to specify the desired number of crosses, set maximum and minimum crosses per parent, and define the maximum allowable parent relationship for creating crosses. As an outcome, SimpleMating generates a mating plan from the target parental population using single or multi-trait criteria. For example, we implemented and tested SimpleMating in a simulated maize breeding program obtained through stochastic simulations. The crosses designed via SimpleMating showed a large genetic mean over time (up to 22% more genetic gain than conventional genomic selection programs, with lesser loss of genetic diversity over time), supporting the use of this tool, as well as the use of data-driven decisions in breeding programs.
期刊介绍:
The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.