Pierre Bouvet, Carlo Bevilacqua, Yogeshwari Ambekar, Giuseppe Antonacci, Joshua Au, Silvia Caponi, Sophie Chagnon-Lessard, Juergen Czarske, Thomas Dehoux, Daniele Fioretto, Yujian Fu, Jochen Guck, Thorsten Hamann, Dag Heinemann, Torsten Jähnke, Hubert Jean-Ruel, Irina Kabakova, Kristie Koski, Nektarios Koukourakis, David Krause, Salvatore La Cavera, Timm Landes, Jinhao Li, Jeremie Margueritat, Maurizio Mattarelli, Michael Monaghan, Darryl R Overby, Fernando Perez-Cota, Emanuele Pontecorvo, Robert Prevedel, Giancarlo Ruocco, John Sandercock, Giuliano Scarcelli, Filippo Scarponi, Claudia Testi, Peter Török, Lucie Vovard, Wolfgang Weninger, Vladislav Yakovlev, Seok-Hyun Yun, Jitao Zhang, Francesca Palombo, Alberto Bilenca, Kareem Elsayad
{"title":"生物材料布里渊光散射显微镜共识声明。","authors":"Pierre Bouvet, Carlo Bevilacqua, Yogeshwari Ambekar, Giuseppe Antonacci, Joshua Au, Silvia Caponi, Sophie Chagnon-Lessard, Juergen Czarske, Thomas Dehoux, Daniele Fioretto, Yujian Fu, Jochen Guck, Thorsten Hamann, Dag Heinemann, Torsten Jähnke, Hubert Jean-Ruel, Irina Kabakova, Kristie Koski, Nektarios Koukourakis, David Krause, Salvatore La Cavera, Timm Landes, Jinhao Li, Jeremie Margueritat, Maurizio Mattarelli, Michael Monaghan, Darryl R Overby, Fernando Perez-Cota, Emanuele Pontecorvo, Robert Prevedel, Giancarlo Ruocco, John Sandercock, Giuliano Scarcelli, Filippo Scarponi, Claudia Testi, Peter Török, Lucie Vovard, Wolfgang Weninger, Vladislav Yakovlev, Seok-Hyun Yun, Jitao Zhang, Francesca Palombo, Alberto Bilenca, Kareem Elsayad","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Brillouin Light Scattering (BLS) spectroscopy is a non-invasive, non-contact, label-free optical technique that can provide information on the mechanical properties of a material on the sub-micron scale. Over the last decade it has seen increased applications in the life sciences, driven by the observed significance of mechanical properties in biological processes, the realization of more sensitive BLS spectrometers and its extension to an imaging modality. As with other spectroscopic techniques, BLS measurements not only detect signals characteristic of the investigated sample, but also of the experimental apparatus, and can be significantly affected by measurement conditions. The aim of this consensus statement is to improve the comparability of BLS studies by providing reporting recommendations for the measured parameters and detailing common artifacts. Given that most BLS studies of biological matter are still at proof-of-concept stages and use different--often self-built--spectrometers, a consensus statement is particularly timely to assure unified advancement.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601801/pdf/","citationCount":"0","resultStr":"{\"title\":\"Consensus Statement on Brillouin Light Scattering Microscopy of Biological Materials.\",\"authors\":\"Pierre Bouvet, Carlo Bevilacqua, Yogeshwari Ambekar, Giuseppe Antonacci, Joshua Au, Silvia Caponi, Sophie Chagnon-Lessard, Juergen Czarske, Thomas Dehoux, Daniele Fioretto, Yujian Fu, Jochen Guck, Thorsten Hamann, Dag Heinemann, Torsten Jähnke, Hubert Jean-Ruel, Irina Kabakova, Kristie Koski, Nektarios Koukourakis, David Krause, Salvatore La Cavera, Timm Landes, Jinhao Li, Jeremie Margueritat, Maurizio Mattarelli, Michael Monaghan, Darryl R Overby, Fernando Perez-Cota, Emanuele Pontecorvo, Robert Prevedel, Giancarlo Ruocco, John Sandercock, Giuliano Scarcelli, Filippo Scarponi, Claudia Testi, Peter Török, Lucie Vovard, Wolfgang Weninger, Vladislav Yakovlev, Seok-Hyun Yun, Jitao Zhang, Francesca Palombo, Alberto Bilenca, Kareem Elsayad\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brillouin Light Scattering (BLS) spectroscopy is a non-invasive, non-contact, label-free optical technique that can provide information on the mechanical properties of a material on the sub-micron scale. Over the last decade it has seen increased applications in the life sciences, driven by the observed significance of mechanical properties in biological processes, the realization of more sensitive BLS spectrometers and its extension to an imaging modality. As with other spectroscopic techniques, BLS measurements not only detect signals characteristic of the investigated sample, but also of the experimental apparatus, and can be significantly affected by measurement conditions. The aim of this consensus statement is to improve the comparability of BLS studies by providing reporting recommendations for the measured parameters and detailing common artifacts. Given that most BLS studies of biological matter are still at proof-of-concept stages and use different--often self-built--spectrometers, a consensus statement is particularly timely to assure unified advancement.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601801/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Consensus Statement on Brillouin Light Scattering Microscopy of Biological Materials.
Brillouin Light Scattering (BLS) spectroscopy is a non-invasive, non-contact, label-free optical technique that can provide information on the mechanical properties of a material on the sub-micron scale. Over the last decade it has seen increased applications in the life sciences, driven by the observed significance of mechanical properties in biological processes, the realization of more sensitive BLS spectrometers and its extension to an imaging modality. As with other spectroscopic techniques, BLS measurements not only detect signals characteristic of the investigated sample, but also of the experimental apparatus, and can be significantly affected by measurement conditions. The aim of this consensus statement is to improve the comparability of BLS studies by providing reporting recommendations for the measured parameters and detailing common artifacts. Given that most BLS studies of biological matter are still at proof-of-concept stages and use different--often self-built--spectrometers, a consensus statement is particularly timely to assure unified advancement.