腱索结构参数变化对模拟房室瓣关闭的影响

ArXiv Pub Date : 2024-11-14
Nicolas R Mangine, Devin W Laurence, Patricia M Sabin, Wensi Wu, Christian Herz, Christopher N Zelonis, Justin S Unger, Csaba Pinter, Andras Lasso, Steve A Maas, Jeffrey A Weiss, Matthew A Jolley
{"title":"腱索结构参数变化对模拟房室瓣关闭的影响","authors":"Nicolas R Mangine, Devin W Laurence, Patricia M Sabin, Wensi Wu, Christian Herz, Christopher N Zelonis, Justin S Unger, Csaba Pinter, Andras Lasso, Steve A Maas, Jeffrey A Weiss, Matthew A Jolley","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Many approaches have been used to model chordae tendineae geometries in finite element simulations of atrioventricular heart valves. Unfortunately, current \"functional\" chordae tendineae geometries lack fidelity (e.g., branching) that would be helpful when informing clinical decisions. The objectives of this work are (i) to improve synthetic chordae tendineae geometry fidelity to consider branching and (ii) to define how the chordae tendineae geometry affects finite element simulations of valve closure.</p><p><strong>Methods: </strong>In this work, we develop an open-source method to construct synthetic chordae tendineae geometries in the SlicerHeart Extension of 3D Slicer. The generated geometries are then used in FEBio finite element simulations of atrioventricular valve function to evaluate how variations in chordae tendineae geometry influence valve behavior. Effects are evaluated using functional and mechanical metrics.</p><p><strong>Results: </strong>Our findings demonstrated that altering the chordae tendineae geometry of a stereotypical mitral valve led to changes in clinically relevant valve metrics (regurgitant orifice area, contact area, and billowing volume) and valve mechanics (first principal strains). Specifically, cross sectional area had the most influence over valve closure metrics, followed by chordae tendineae density, length, radius and branches. We then used this information to showcase the flexibility of our new workflow by altering the chordae tendineae geometry of two additional geometries (mitral valve with annular dilation and tricuspid valve) to improve finite element predictions.</p><p><strong>Conclusion: </strong>This study presents a flexible, open-source method for generating synthetic chordae tendineae with realistic branching structures. Further, we establish relationships between the chordae tendineae geometry and valve functional/mechanical metrics. This research contribution helps enrich our opensource workflow and brings the finite element simulations closer to use in a patient-specific clinical setting.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601809/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of Parametric Variation of Chordae Tendineae Structure on Simulated Atrioventricular Valve Closure.\",\"authors\":\"Nicolas R Mangine, Devin W Laurence, Patricia M Sabin, Wensi Wu, Christian Herz, Christopher N Zelonis, Justin S Unger, Csaba Pinter, Andras Lasso, Steve A Maas, Jeffrey A Weiss, Matthew A Jolley\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Many approaches have been used to model chordae tendineae geometries in finite element simulations of atrioventricular heart valves. Unfortunately, current \\\"functional\\\" chordae tendineae geometries lack fidelity (e.g., branching) that would be helpful when informing clinical decisions. The objectives of this work are (i) to improve synthetic chordae tendineae geometry fidelity to consider branching and (ii) to define how the chordae tendineae geometry affects finite element simulations of valve closure.</p><p><strong>Methods: </strong>In this work, we develop an open-source method to construct synthetic chordae tendineae geometries in the SlicerHeart Extension of 3D Slicer. The generated geometries are then used in FEBio finite element simulations of atrioventricular valve function to evaluate how variations in chordae tendineae geometry influence valve behavior. Effects are evaluated using functional and mechanical metrics.</p><p><strong>Results: </strong>Our findings demonstrated that altering the chordae tendineae geometry of a stereotypical mitral valve led to changes in clinically relevant valve metrics (regurgitant orifice area, contact area, and billowing volume) and valve mechanics (first principal strains). Specifically, cross sectional area had the most influence over valve closure metrics, followed by chordae tendineae density, length, radius and branches. We then used this information to showcase the flexibility of our new workflow by altering the chordae tendineae geometry of two additional geometries (mitral valve with annular dilation and tricuspid valve) to improve finite element predictions.</p><p><strong>Conclusion: </strong>This study presents a flexible, open-source method for generating synthetic chordae tendineae with realistic branching structures. Further, we establish relationships between the chordae tendineae geometry and valve functional/mechanical metrics. This research contribution helps enrich our opensource workflow and brings the finite element simulations closer to use in a patient-specific clinical setting.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601809/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在房室心瓣膜的有限元模拟中,有许多方法被用来模拟腱膜几何形状。遗憾的是,目前的 "功能性 "腱膜几何模型缺乏保真度,而这种保真度有助于为临床决策提供信息。这项工作的目标是:(i)提高合成腱膜腱索几何图形的保真度,以考虑分支;(ii)确定腱膜腱索几何图形如何影响瓣膜关闭的有限元模拟。在这项工作中,我们开发了一种开源方法,用于在 3D Slicer 的 SlicerHeart 扩展中构建合成腱膜腱索几何图形。生成的几何图形随后被用于房室瓣功能的 FEBio 有限元模拟,以评估腱索几何图形的变化如何影响瓣膜行为。我们使用功能和机械指标对影响进行了评估。我们的研究结果表明,改变定型二尖瓣腱膜的几何形状会导致临床相关的瓣膜指标和瓣膜力学发生变化。具体来说,横截面积对瓣膜关闭指标的影响最大,其次是腱索密度、长度、半径和分支。然后,我们利用这些信息展示了新工作流程的灵活性,通过改变另外两种几何形状(二尖瓣瓣环扩张和三尖瓣)的腱膜几何形状来改进有限元预测。本研究提出了一种灵活的开源方法,用于生成具有逼真分支结构的合成腱索。此外,我们还建立了腱索几何形状与瓣膜功能/机械指标之间的关系。这项研究有助于丰富我们的开源工作流程,并使有限元模拟更接近于在特定患者的临床环境中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Parametric Variation of Chordae Tendineae Structure on Simulated Atrioventricular Valve Closure.

Purpose: Many approaches have been used to model chordae tendineae geometries in finite element simulations of atrioventricular heart valves. Unfortunately, current "functional" chordae tendineae geometries lack fidelity (e.g., branching) that would be helpful when informing clinical decisions. The objectives of this work are (i) to improve synthetic chordae tendineae geometry fidelity to consider branching and (ii) to define how the chordae tendineae geometry affects finite element simulations of valve closure.

Methods: In this work, we develop an open-source method to construct synthetic chordae tendineae geometries in the SlicerHeart Extension of 3D Slicer. The generated geometries are then used in FEBio finite element simulations of atrioventricular valve function to evaluate how variations in chordae tendineae geometry influence valve behavior. Effects are evaluated using functional and mechanical metrics.

Results: Our findings demonstrated that altering the chordae tendineae geometry of a stereotypical mitral valve led to changes in clinically relevant valve metrics (regurgitant orifice area, contact area, and billowing volume) and valve mechanics (first principal strains). Specifically, cross sectional area had the most influence over valve closure metrics, followed by chordae tendineae density, length, radius and branches. We then used this information to showcase the flexibility of our new workflow by altering the chordae tendineae geometry of two additional geometries (mitral valve with annular dilation and tricuspid valve) to improve finite element predictions.

Conclusion: This study presents a flexible, open-source method for generating synthetic chordae tendineae with realistic branching structures. Further, we establish relationships between the chordae tendineae geometry and valve functional/mechanical metrics. This research contribution helps enrich our opensource workflow and brings the finite element simulations closer to use in a patient-specific clinical setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metastability in networks of nonlinear stochastic integrate-and-fire neurons. On the linear scaling of entropy vs. energy in human brain activity, the Hagedorn temperature and the Zipf law. Timing consistency of T cell receptor activation in a stochastic model combining kinetic segregation and proofreading. Brain Morphology Normative modelling platform for abnormality and Centile estimation: Brain MoNoCle. Adversarial Attacks on Large Language Models in Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1