Guangli Yu , Fei Ni , Wenyue Niu , Yu Chen , Feng Zhang , Guo-Dong Li , Xingfei Song , Yajing Zhang , Kangjun Wang
{"title":"精确控制基于 Zr(IV)-Based Metal-Organic Frameworks 的孔隙大小,提高从水中去除双酚 A 的能力。","authors":"Guangli Yu , Fei Ni , Wenyue Niu , Yu Chen , Feng Zhang , Guo-Dong Li , Xingfei Song , Yajing Zhang , Kangjun Wang","doi":"10.1016/j.chemosphere.2024.143816","DOIUrl":null,"url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) recently gained immense popularity for the adsorption of organic impurities. In this work, the adsorptive separation of bisphenol A (BPA) from aqueous mixtures was explored utilizing three types of zirconium-based MOFs, namely MOF-808, UiO-66, and hierarchically porous UiO-66 (HP-UiO-66). The HP-UiO-66, which was etched by sodium acetate as the terminal ligand, generated large mesopores ranging from 40 to 300 Å due to the departure of partial linkers and metallic clusters. The adsorption ability for BPA increased significantly with the introduction of numerous mesopores onto the HP-UiO-66 framework, even though the surface area of HP-UiO-66 was lower compared to that of the pristine UiO-66 and MOF-808. The study revealed that the maximum adsorption capacities (<em>q</em>) for BPA by HP-UiO-66 reached up to 295.04 mg g<sup>−1</sup>, which was about 88.5% and 17.4% higher in comparison to UiO-66 and MOF-808, respectively. Furthermore, the <em>q</em> value of HP-UiO-66 was also better than many other previously reported MOF adsorbents. The analysis of possible adsorption mechanisms indicated that physical pore-filling was anticipated as the principal mechanism, attributed to the larger window size and high mesopore surface area of HP-UiO-66. Furthermore, X-ray photoelectron and Fourier transform infrared spectroscopic measurements inferred that the synergetic effects of H-bonding and π-π interactions played crucial roles in BPA capture as well. Overall, this study revealed a structure–property relationship in the Zr-MOFs-based adsorbents and opened up a new avenue to exploit unique MOF platforms for the efficient removal of emerging contaminations in the future.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"369 ","pages":"Article 143816"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise manipulation of pore sizes in Zr(IV)-Based metal-organic frameworks for enhanced bisphenol a removal from water\",\"authors\":\"Guangli Yu , Fei Ni , Wenyue Niu , Yu Chen , Feng Zhang , Guo-Dong Li , Xingfei Song , Yajing Zhang , Kangjun Wang\",\"doi\":\"10.1016/j.chemosphere.2024.143816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metal-organic frameworks (MOFs) recently gained immense popularity for the adsorption of organic impurities. In this work, the adsorptive separation of bisphenol A (BPA) from aqueous mixtures was explored utilizing three types of zirconium-based MOFs, namely MOF-808, UiO-66, and hierarchically porous UiO-66 (HP-UiO-66). The HP-UiO-66, which was etched by sodium acetate as the terminal ligand, generated large mesopores ranging from 40 to 300 Å due to the departure of partial linkers and metallic clusters. The adsorption ability for BPA increased significantly with the introduction of numerous mesopores onto the HP-UiO-66 framework, even though the surface area of HP-UiO-66 was lower compared to that of the pristine UiO-66 and MOF-808. The study revealed that the maximum adsorption capacities (<em>q</em>) for BPA by HP-UiO-66 reached up to 295.04 mg g<sup>−1</sup>, which was about 88.5% and 17.4% higher in comparison to UiO-66 and MOF-808, respectively. Furthermore, the <em>q</em> value of HP-UiO-66 was also better than many other previously reported MOF adsorbents. The analysis of possible adsorption mechanisms indicated that physical pore-filling was anticipated as the principal mechanism, attributed to the larger window size and high mesopore surface area of HP-UiO-66. Furthermore, X-ray photoelectron and Fourier transform infrared spectroscopic measurements inferred that the synergetic effects of H-bonding and π-π interactions played crucial roles in BPA capture as well. Overall, this study revealed a structure–property relationship in the Zr-MOFs-based adsorbents and opened up a new avenue to exploit unique MOF platforms for the efficient removal of emerging contaminations in the future.</div></div>\",\"PeriodicalId\":276,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\"369 \",\"pages\":\"Article 143816\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045653524027176\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524027176","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Precise manipulation of pore sizes in Zr(IV)-Based metal-organic frameworks for enhanced bisphenol a removal from water
Metal-organic frameworks (MOFs) recently gained immense popularity for the adsorption of organic impurities. In this work, the adsorptive separation of bisphenol A (BPA) from aqueous mixtures was explored utilizing three types of zirconium-based MOFs, namely MOF-808, UiO-66, and hierarchically porous UiO-66 (HP-UiO-66). The HP-UiO-66, which was etched by sodium acetate as the terminal ligand, generated large mesopores ranging from 40 to 300 Å due to the departure of partial linkers and metallic clusters. The adsorption ability for BPA increased significantly with the introduction of numerous mesopores onto the HP-UiO-66 framework, even though the surface area of HP-UiO-66 was lower compared to that of the pristine UiO-66 and MOF-808. The study revealed that the maximum adsorption capacities (q) for BPA by HP-UiO-66 reached up to 295.04 mg g−1, which was about 88.5% and 17.4% higher in comparison to UiO-66 and MOF-808, respectively. Furthermore, the q value of HP-UiO-66 was also better than many other previously reported MOF adsorbents. The analysis of possible adsorption mechanisms indicated that physical pore-filling was anticipated as the principal mechanism, attributed to the larger window size and high mesopore surface area of HP-UiO-66. Furthermore, X-ray photoelectron and Fourier transform infrared spectroscopic measurements inferred that the synergetic effects of H-bonding and π-π interactions played crucial roles in BPA capture as well. Overall, this study revealed a structure–property relationship in the Zr-MOFs-based adsorbents and opened up a new avenue to exploit unique MOF platforms for the efficient removal of emerging contaminations in the future.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.