Pablo Yair Huais, Luis Osorio-Olvera, Javier Maximiliano Cordier, Ana N. Tomba, Jorge Soberón, Rafael Loyola, Javier Nori
{"title":"重新思考濒危陆生脊椎动物的全球热点","authors":"Pablo Yair Huais, Luis Osorio-Olvera, Javier Maximiliano Cordier, Ana N. Tomba, Jorge Soberón, Rafael Loyola, Javier Nori","doi":"10.1111/geb.13942","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>We aimed to delimit hotspots for terrestrial threatened vertebrate species (HTV) through novel macroecological and statistical approaches.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Global.</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>Present day (1979–2024).</p>\n </section>\n \n <section>\n \n <h3> Major Taxa Studied</h3>\n \n <p>Terrestrial threatened vertebrate species (<i>n</i> = 7188).</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In comparison with previous delimitations of hotspots, we: (i) considered richness and degree of endemism together through a robust statistical framework; (ii) focused on a priority set of species extremely important in terms of conservation, based on IUCN threat status; and (iii) used a fine spatial scale which allowed us to define key sub-areas within classic hotspots. We also assessed the degree of protection and human impact within the proposed HTV.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We propose 20 global hotspots for threatened terrestrial vertebrates. In comparison with classic hotspots, proposed HTV have a significantly more limited distribution, covering ~27% of classic hotspots' area. In addition, a large proportion of HTV (~27%) does not match with classic hotspots. The overlap between HTV and protected areas (PAs) is low (< 11%), and extremely low when only strict protected areas are considered (< 1.5%). Also, a great degree of HTV exhibits high to extreme levels of human modification. On average, the velocity of climate change within HTV has been low, but attention must be given to notable areas presenting medium to high velocities. Interestingly, the geographical locations of highly endemic and rich areas considerably varied across individual vertebrate taxa. Yet, a high proportion of these priority areas for individual taxa are covered by the proposed HTV (74%–89%).</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Our findings present key areas of the world for threatened terrestrial vertebrate species, many of these at high risk due to an interplay among low levels of protection, extreme levels of human modification and climate change. The proposed HTV are highly relevant in terms of decision-making, serving as a guide for allocating the limited conservation resources.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"34 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rethinking Global Hotspots for Threatened Terrestrial Vertebrates\",\"authors\":\"Pablo Yair Huais, Luis Osorio-Olvera, Javier Maximiliano Cordier, Ana N. Tomba, Jorge Soberón, Rafael Loyola, Javier Nori\",\"doi\":\"10.1111/geb.13942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>We aimed to delimit hotspots for terrestrial threatened vertebrate species (HTV) through novel macroecological and statistical approaches.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Global.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Time Period</h3>\\n \\n <p>Present day (1979–2024).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Major Taxa Studied</h3>\\n \\n <p>Terrestrial threatened vertebrate species (<i>n</i> = 7188).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>In comparison with previous delimitations of hotspots, we: (i) considered richness and degree of endemism together through a robust statistical framework; (ii) focused on a priority set of species extremely important in terms of conservation, based on IUCN threat status; and (iii) used a fine spatial scale which allowed us to define key sub-areas within classic hotspots. We also assessed the degree of protection and human impact within the proposed HTV.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>We propose 20 global hotspots for threatened terrestrial vertebrates. In comparison with classic hotspots, proposed HTV have a significantly more limited distribution, covering ~27% of classic hotspots' area. In addition, a large proportion of HTV (~27%) does not match with classic hotspots. The overlap between HTV and protected areas (PAs) is low (< 11%), and extremely low when only strict protected areas are considered (< 1.5%). Also, a great degree of HTV exhibits high to extreme levels of human modification. On average, the velocity of climate change within HTV has been low, but attention must be given to notable areas presenting medium to high velocities. Interestingly, the geographical locations of highly endemic and rich areas considerably varied across individual vertebrate taxa. Yet, a high proportion of these priority areas for individual taxa are covered by the proposed HTV (74%–89%).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main Conclusions</h3>\\n \\n <p>Our findings present key areas of the world for threatened terrestrial vertebrate species, many of these at high risk due to an interplay among low levels of protection, extreme levels of human modification and climate change. The proposed HTV are highly relevant in terms of decision-making, serving as a guide for allocating the limited conservation resources.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.13942\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13942","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Rethinking Global Hotspots for Threatened Terrestrial Vertebrates
Aim
We aimed to delimit hotspots for terrestrial threatened vertebrate species (HTV) through novel macroecological and statistical approaches.
Location
Global.
Time Period
Present day (1979–2024).
Major Taxa Studied
Terrestrial threatened vertebrate species (n = 7188).
Methods
In comparison with previous delimitations of hotspots, we: (i) considered richness and degree of endemism together through a robust statistical framework; (ii) focused on a priority set of species extremely important in terms of conservation, based on IUCN threat status; and (iii) used a fine spatial scale which allowed us to define key sub-areas within classic hotspots. We also assessed the degree of protection and human impact within the proposed HTV.
Results
We propose 20 global hotspots for threatened terrestrial vertebrates. In comparison with classic hotspots, proposed HTV have a significantly more limited distribution, covering ~27% of classic hotspots' area. In addition, a large proportion of HTV (~27%) does not match with classic hotspots. The overlap between HTV and protected areas (PAs) is low (< 11%), and extremely low when only strict protected areas are considered (< 1.5%). Also, a great degree of HTV exhibits high to extreme levels of human modification. On average, the velocity of climate change within HTV has been low, but attention must be given to notable areas presenting medium to high velocities. Interestingly, the geographical locations of highly endemic and rich areas considerably varied across individual vertebrate taxa. Yet, a high proportion of these priority areas for individual taxa are covered by the proposed HTV (74%–89%).
Main Conclusions
Our findings present key areas of the world for threatened terrestrial vertebrate species, many of these at high risk due to an interplay among low levels of protection, extreme levels of human modification and climate change. The proposed HTV are highly relevant in terms of decision-making, serving as a guide for allocating the limited conservation resources.
期刊介绍:
Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.