掺铥光纤激光器的弱锁模动力学

IF 3.1 3区 物理与天体物理 Q2 Engineering Optik Pub Date : 2024-11-26 DOI:10.1016/j.ijleo.2024.172153
L.M. Gonzalez-Vidal , O. Pottiez , L.A. Rodriguez-Morales , H.E. Ibarra-Villalon , M. Bello-Jimenez , J.P. Lauterio-Cruz , J.C. Hernandez-Garcia
{"title":"掺铥光纤激光器的弱锁模动力学","authors":"L.M. Gonzalez-Vidal ,&nbsp;O. Pottiez ,&nbsp;L.A. Rodriguez-Morales ,&nbsp;H.E. Ibarra-Villalon ,&nbsp;M. Bello-Jimenez ,&nbsp;J.P. Lauterio-Cruz ,&nbsp;J.C. Hernandez-Garcia","doi":"10.1016/j.ijleo.2024.172153","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we study partial mode locking dynamics in a figure-eight thulium-doped fiber laser. With this particular laser design, which includes a long, highly power-imbalanced NOLM, two regimes are successively identified as pump power is raised, both characterized by a narrow-linewidth emission consisting of broad periodic pulses emerging from a dominant background radiation. In each case, peculiar dynamics are identified. In the first regime, the pulses undergo dynamical evolution at two different time scales: at the scale of hundreds of cycles, a slow quasi-periodic modulation affects both the pulse intensity and temporal position, whereas at the scale of the pulse duration, the inner details of its complex profile are found to drift under the pulse envelope. These phenomena are interpreted in terms of slow and fast gain dynamics, respectively. In the second regime, the waveform displays large Q-switched-like oscillations whose details reveal both the peak power clamping effect of the NOLM nonlinear transmission and competition between the pulse and the spurious background radiation. Finally, reducing pump power yields a quasi-continuous-wave regime in which the temporal waveform displays a self-imaging effect, as complex features in the temporal map repeat with a periodicity of 4.81 cavity cycles. Such behavior strongly contrasts with the stochasticity expected for this type of regime. These results illustrate the complex operation of long thulium-doped fiber lasers producing pulses in the 2-micron region, which are attractive for fundamental research, and also for applications such as surgery.</div></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"321 ","pages":"Article 172153"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak mode locking dynamics in a thulium-doped fiber laser\",\"authors\":\"L.M. Gonzalez-Vidal ,&nbsp;O. Pottiez ,&nbsp;L.A. Rodriguez-Morales ,&nbsp;H.E. Ibarra-Villalon ,&nbsp;M. Bello-Jimenez ,&nbsp;J.P. Lauterio-Cruz ,&nbsp;J.C. Hernandez-Garcia\",\"doi\":\"10.1016/j.ijleo.2024.172153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we study partial mode locking dynamics in a figure-eight thulium-doped fiber laser. With this particular laser design, which includes a long, highly power-imbalanced NOLM, two regimes are successively identified as pump power is raised, both characterized by a narrow-linewidth emission consisting of broad periodic pulses emerging from a dominant background radiation. In each case, peculiar dynamics are identified. In the first regime, the pulses undergo dynamical evolution at two different time scales: at the scale of hundreds of cycles, a slow quasi-periodic modulation affects both the pulse intensity and temporal position, whereas at the scale of the pulse duration, the inner details of its complex profile are found to drift under the pulse envelope. These phenomena are interpreted in terms of slow and fast gain dynamics, respectively. In the second regime, the waveform displays large Q-switched-like oscillations whose details reveal both the peak power clamping effect of the NOLM nonlinear transmission and competition between the pulse and the spurious background radiation. Finally, reducing pump power yields a quasi-continuous-wave regime in which the temporal waveform displays a self-imaging effect, as complex features in the temporal map repeat with a periodicity of 4.81 cavity cycles. Such behavior strongly contrasts with the stochasticity expected for this type of regime. These results illustrate the complex operation of long thulium-doped fiber lasers producing pulses in the 2-micron region, which are attractive for fundamental research, and also for applications such as surgery.</div></div>\",\"PeriodicalId\":19513,\"journal\":{\"name\":\"Optik\",\"volume\":\"321 \",\"pages\":\"Article 172153\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030402624005527\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624005527","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了8字形掺铥光纤激光器的部分锁模动力学。这种特殊的激光设计,包括一个长,高度功率不平衡的NOLM,两个制度相继被确定为泵浦功率提高,两者的特点是窄线宽发射组成的宽周期脉冲从主导背景辐射出现。在每种情况下,都确定了特殊的动力学。在第一种情况下,脉冲在两个不同的时间尺度上进行动态演化:在数百周期尺度上,缓慢的准周期调制影响脉冲强度和时间位置,而在脉冲持续时间尺度上,其复杂剖面的内部细节被发现在脉冲包络下漂移。这些现象分别用慢增益和快增益动力学来解释。在第二个区域,波形显示出类似q开关的大振荡,其细节揭示了NOLM非线性传输的峰值功率箝位效应以及脉冲与杂散背景辐射之间的竞争。最后,降低泵浦功率产生准连续波状态,其中时间波形显示自成像效应,因为时间图中的复杂特征以4.81个腔周期的周期性重复。这种行为与这类制度所期望的随机性形成强烈对比。这些结果说明了长掺铥光纤激光器在2微米区域产生脉冲的复杂操作,这对基础研究和手术等应用具有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weak mode locking dynamics in a thulium-doped fiber laser
In this work, we study partial mode locking dynamics in a figure-eight thulium-doped fiber laser. With this particular laser design, which includes a long, highly power-imbalanced NOLM, two regimes are successively identified as pump power is raised, both characterized by a narrow-linewidth emission consisting of broad periodic pulses emerging from a dominant background radiation. In each case, peculiar dynamics are identified. In the first regime, the pulses undergo dynamical evolution at two different time scales: at the scale of hundreds of cycles, a slow quasi-periodic modulation affects both the pulse intensity and temporal position, whereas at the scale of the pulse duration, the inner details of its complex profile are found to drift under the pulse envelope. These phenomena are interpreted in terms of slow and fast gain dynamics, respectively. In the second regime, the waveform displays large Q-switched-like oscillations whose details reveal both the peak power clamping effect of the NOLM nonlinear transmission and competition between the pulse and the spurious background radiation. Finally, reducing pump power yields a quasi-continuous-wave regime in which the temporal waveform displays a self-imaging effect, as complex features in the temporal map repeat with a periodicity of 4.81 cavity cycles. Such behavior strongly contrasts with the stochasticity expected for this type of regime. These results illustrate the complex operation of long thulium-doped fiber lasers producing pulses in the 2-micron region, which are attractive for fundamental research, and also for applications such as surgery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optik
Optik 物理-光学
CiteScore
6.90
自引率
12.90%
发文量
1471
审稿时长
46 days
期刊介绍: Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields: Optics: -Optics design, geometrical and beam optics, wave optics- Optical and micro-optical components, diffractive optics, devices and systems- Photoelectric and optoelectronic devices- Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials- Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis- Optical testing and measuring techniques- Optical communication and computing- Physiological optics- As well as other related topics.
期刊最新文献
Weak mode locking dynamics in a thulium-doped fiber laser Design of cascaded diffractive optical elements generating different intensity distributions at several operating wavelengths Whispery gallery mode plasmonic biosensor based on intensifying graphene layer Chemometric advances in COD analysis: Overcoming turbidity interference with a Hybrid PLS-ANN approach A closely spaced dual-band dual-sense linear-to-circular polarization converter for X-band applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1