Yan Xu , Qun-Xiong Zhu , Wei Ke , Yan-Lin He , Ming-Qing Zhang , Yuan Xu
{"title":"在小样本场景下使用发光嵌入变分自编码器进行软测量的虚拟样本生成","authors":"Yan Xu , Qun-Xiong Zhu , Wei Ke , Yan-Lin He , Ming-Qing Zhang , Yuan Xu","doi":"10.1016/j.compchemeng.2024.108925","DOIUrl":null,"url":null,"abstract":"<div><div>In industrial processes, limitations of the physical environment, sensors drop-out, and repetitive sampling often lead to insufficient and unevenly distributed representative instances, which greatly hinders the accuracy of soft-sensing models. This paper presents a novel virtual sample generation method based on Glow-embedded variational autoencoder (GVAE-VSG), aimed at enhancing data richness and diversity to improve the modeling performance. Specifically, GVAE-VSG embeds the Glow model from flow transformations into the variational autoencoder. This allows for the derivation of a more generalized posterior distribution without reducing sample dimensionality, thereby ensuring the generation of higher-quality virtual input samples. Subsequently, a nonlinear iterative partial least squares regression framework, incorporating a sparse constrained error matrix, is employed to generate virtual output samples that more closely resemble actual data. Finally, by a synthetic nonlinear function and an actual purification terephthalic acid (PTA) solvent system, the generative and modeling performance of the proposed method are comprehensively assessed.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"193 ","pages":"Article 108925"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual sample generation for soft-sensing in small sample scenarios using glow-embedded variational autoencoder\",\"authors\":\"Yan Xu , Qun-Xiong Zhu , Wei Ke , Yan-Lin He , Ming-Qing Zhang , Yuan Xu\",\"doi\":\"10.1016/j.compchemeng.2024.108925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In industrial processes, limitations of the physical environment, sensors drop-out, and repetitive sampling often lead to insufficient and unevenly distributed representative instances, which greatly hinders the accuracy of soft-sensing models. This paper presents a novel virtual sample generation method based on Glow-embedded variational autoencoder (GVAE-VSG), aimed at enhancing data richness and diversity to improve the modeling performance. Specifically, GVAE-VSG embeds the Glow model from flow transformations into the variational autoencoder. This allows for the derivation of a more generalized posterior distribution without reducing sample dimensionality, thereby ensuring the generation of higher-quality virtual input samples. Subsequently, a nonlinear iterative partial least squares regression framework, incorporating a sparse constrained error matrix, is employed to generate virtual output samples that more closely resemble actual data. Finally, by a synthetic nonlinear function and an actual purification terephthalic acid (PTA) solvent system, the generative and modeling performance of the proposed method are comprehensively assessed.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"193 \",\"pages\":\"Article 108925\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424003430\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003430","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Virtual sample generation for soft-sensing in small sample scenarios using glow-embedded variational autoencoder
In industrial processes, limitations of the physical environment, sensors drop-out, and repetitive sampling often lead to insufficient and unevenly distributed representative instances, which greatly hinders the accuracy of soft-sensing models. This paper presents a novel virtual sample generation method based on Glow-embedded variational autoencoder (GVAE-VSG), aimed at enhancing data richness and diversity to improve the modeling performance. Specifically, GVAE-VSG embeds the Glow model from flow transformations into the variational autoencoder. This allows for the derivation of a more generalized posterior distribution without reducing sample dimensionality, thereby ensuring the generation of higher-quality virtual input samples. Subsequently, a nonlinear iterative partial least squares regression framework, incorporating a sparse constrained error matrix, is employed to generate virtual output samples that more closely resemble actual data. Finally, by a synthetic nonlinear function and an actual purification terephthalic acid (PTA) solvent system, the generative and modeling performance of the proposed method are comprehensively assessed.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.