Xueli Wang , Pengju Zhang , Xuquan Dong , Jingyu Wang , Jiabin Fang , Xiaoyan Zhang , Lang Liu
{"title":"利用环形热管优良的传热性能进行回填矿山地热能开采的数值研究","authors":"Xueli Wang , Pengju Zhang , Xuquan Dong , Jingyu Wang , Jiabin Fang , Xiaoyan Zhang , Lang Liu","doi":"10.1016/j.icheatmasstransfer.2024.108385","DOIUrl":null,"url":null,"abstract":"<div><div>Deep mine harbor substantial geothermal energy. Integrating a heat exchanger within the backfill body mitigates thermal hazards and facilitates the concurrent extraction of mineral and geothermal resources. Inspired by the capabilities of superior thermal conductivity, high heat transfer limit without additional energy consumption of loop heat pipe (LHP), a novel cemented paste backfill system coupled with an LHP heat exchanger (LHPHE-CPB) was developed to effectively improve the thermal conductivity of backfill body and enhance the extraction performance of geothermal energy in backfilled mines. The temperature evolutions of LHPHE-CPB system and the mechanisms of vapor-liquid phase transition and two-phase flow within LHP were numerically analyzed during the stages of heat storage and simultaneous heat storage/heat release. Orthogonal tests meticulously examined the effects of surrounding rock temperature, and the inlet temperature and flow rate of cooling water on the system's heat transfer performance. Optimal operating conditions for the system, in terms of reducing backfill body temperature, achieving favorable temperature differentials between the inlet and outlet cooling water, and enhancing the heat extraction capacity of system, were determined through range and variance analyses. This research establishes a theoretical foundation for the application of LHP in efficiently extracting geothermal energy from backfilled mines.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"160 ","pages":"Article 108385"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical research on geothermal energy extraction in backfilled mines by using the excellent heat transfer performance of loop heat pipe\",\"authors\":\"Xueli Wang , Pengju Zhang , Xuquan Dong , Jingyu Wang , Jiabin Fang , Xiaoyan Zhang , Lang Liu\",\"doi\":\"10.1016/j.icheatmasstransfer.2024.108385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep mine harbor substantial geothermal energy. Integrating a heat exchanger within the backfill body mitigates thermal hazards and facilitates the concurrent extraction of mineral and geothermal resources. Inspired by the capabilities of superior thermal conductivity, high heat transfer limit without additional energy consumption of loop heat pipe (LHP), a novel cemented paste backfill system coupled with an LHP heat exchanger (LHPHE-CPB) was developed to effectively improve the thermal conductivity of backfill body and enhance the extraction performance of geothermal energy in backfilled mines. The temperature evolutions of LHPHE-CPB system and the mechanisms of vapor-liquid phase transition and two-phase flow within LHP were numerically analyzed during the stages of heat storage and simultaneous heat storage/heat release. Orthogonal tests meticulously examined the effects of surrounding rock temperature, and the inlet temperature and flow rate of cooling water on the system's heat transfer performance. Optimal operating conditions for the system, in terms of reducing backfill body temperature, achieving favorable temperature differentials between the inlet and outlet cooling water, and enhancing the heat extraction capacity of system, were determined through range and variance analyses. This research establishes a theoretical foundation for the application of LHP in efficiently extracting geothermal energy from backfilled mines.</div></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":\"160 \",\"pages\":\"Article 108385\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193324011473\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193324011473","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Numerical research on geothermal energy extraction in backfilled mines by using the excellent heat transfer performance of loop heat pipe
Deep mine harbor substantial geothermal energy. Integrating a heat exchanger within the backfill body mitigates thermal hazards and facilitates the concurrent extraction of mineral and geothermal resources. Inspired by the capabilities of superior thermal conductivity, high heat transfer limit without additional energy consumption of loop heat pipe (LHP), a novel cemented paste backfill system coupled with an LHP heat exchanger (LHPHE-CPB) was developed to effectively improve the thermal conductivity of backfill body and enhance the extraction performance of geothermal energy in backfilled mines. The temperature evolutions of LHPHE-CPB system and the mechanisms of vapor-liquid phase transition and two-phase flow within LHP were numerically analyzed during the stages of heat storage and simultaneous heat storage/heat release. Orthogonal tests meticulously examined the effects of surrounding rock temperature, and the inlet temperature and flow rate of cooling water on the system's heat transfer performance. Optimal operating conditions for the system, in terms of reducing backfill body temperature, achieving favorable temperature differentials between the inlet and outlet cooling water, and enhancing the heat extraction capacity of system, were determined through range and variance analyses. This research establishes a theoretical foundation for the application of LHP in efficiently extracting geothermal energy from backfilled mines.
期刊介绍:
International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.