基于光纤干涉和硅化pH响应水凝胶的pH和温度双参数同步测量

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Pub Date : 2024-11-26 DOI:10.1016/j.measurement.2024.116321
Haiwei Zhang , Sibo Zhang , Zhengyu Liu , Qi Lu , Zhihong Chen , Lifang Xue , Jia Shi , Wei Shi , Jianquan Yao
{"title":"基于光纤干涉和硅化pH响应水凝胶的pH和温度双参数同步测量","authors":"Haiwei Zhang ,&nbsp;Sibo Zhang ,&nbsp;Zhengyu Liu ,&nbsp;Qi Lu ,&nbsp;Zhihong Chen ,&nbsp;Lifang Xue ,&nbsp;Jia Shi ,&nbsp;Wei Shi ,&nbsp;Jianquan Yao","doi":"10.1016/j.measurement.2024.116321","DOIUrl":null,"url":null,"abstract":"<div><div>A no-core and few-mode fiber-based structure coating with polyacrylic acid acrylamide hydrogel is used to realize pH and temperature measurement simultaneously. The proposed structure can be obtained through splicing the no-core fiber, few-mode fiber and no-core fiber (NFN) with a certain length in sequence. Its measurement range can cover 2 to 12 for pH and 20 °C to 90 °C for temperature. Meanwhile, surface silanization of the optical fiber is performed to facilitate the adhesion of the hydrogel and to refine the silanization process. The pH-based transmission-sensitivity is measured to be 0.959 dB/pH and the highest pH-based wavelength-sensitivity is 0.837 nm/pH. The temperature-based wavelength-sensitivities are measured to be 0.01 nm/°C and 0.02 nm/°C, respectively, in two different pH environments of 2 ∼ 5 and 5 ∼ 12, while the temperature-based transmission-sensitivities are measured to be 0.432 dB/°C and 0.356 dB/°C, respectively. The pH response of hydrogel and inherent temperature response of NFN-based Mach-Zehnder interferometer enable the sensor to perform dual parameter measurements for pH and temperature. The dual-parameter matrices are established and validation experiments are carried out. It is demonstrated that the pH and temperature measurement errors can be as low as 0.088 and 1.112°C respectively. This sensor is expected to have broad prospects in environmental monitoring, chemical analysis, and other related fields.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"243 ","pages":"Article 116321"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual parametric simultaneous measurement of pH and temperature based on optical fiber interference and silanized pH-responsive hydrogel\",\"authors\":\"Haiwei Zhang ,&nbsp;Sibo Zhang ,&nbsp;Zhengyu Liu ,&nbsp;Qi Lu ,&nbsp;Zhihong Chen ,&nbsp;Lifang Xue ,&nbsp;Jia Shi ,&nbsp;Wei Shi ,&nbsp;Jianquan Yao\",\"doi\":\"10.1016/j.measurement.2024.116321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A no-core and few-mode fiber-based structure coating with polyacrylic acid acrylamide hydrogel is used to realize pH and temperature measurement simultaneously. The proposed structure can be obtained through splicing the no-core fiber, few-mode fiber and no-core fiber (NFN) with a certain length in sequence. Its measurement range can cover 2 to 12 for pH and 20 °C to 90 °C for temperature. Meanwhile, surface silanization of the optical fiber is performed to facilitate the adhesion of the hydrogel and to refine the silanization process. The pH-based transmission-sensitivity is measured to be 0.959 dB/pH and the highest pH-based wavelength-sensitivity is 0.837 nm/pH. The temperature-based wavelength-sensitivities are measured to be 0.01 nm/°C and 0.02 nm/°C, respectively, in two different pH environments of 2 ∼ 5 and 5 ∼ 12, while the temperature-based transmission-sensitivities are measured to be 0.432 dB/°C and 0.356 dB/°C, respectively. The pH response of hydrogel and inherent temperature response of NFN-based Mach-Zehnder interferometer enable the sensor to perform dual parameter measurements for pH and temperature. The dual-parameter matrices are established and validation experiments are carried out. It is demonstrated that the pH and temperature measurement errors can be as low as 0.088 and 1.112°C respectively. This sensor is expected to have broad prospects in environmental monitoring, chemical analysis, and other related fields.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"243 \",\"pages\":\"Article 116321\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224124022061\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224124022061","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用聚丙烯酸-丙烯酰胺水凝胶的无芯少模纤维结构涂层,实现了pH和温度的同时测量。所提出的结构可以通过按一定长度顺序拼接无芯光纤、少模光纤和无芯光纤(NFN)得到。其测量范围可以覆盖2至12的pH值和20°C至90°C的温度。同时,对所述光纤进行表面硅烷化,以促进水凝胶的粘附,并改进硅烷化工艺。基于pH的传输灵敏度为0.959 dB/pH,基于pH的最高波长灵敏度为0.837 nm/pH。在2 ~ 5和5 ~ 12两种不同的pH环境下,基于温度的波长灵敏度分别为0.01 nm/°C和0.02 nm/°C,而基于温度的传输灵敏度分别为0.432 dB/°C和0.356 dB/°C。水凝胶的pH响应和基于nfn的Mach-Zehnder干涉仪固有的温度响应使传感器能够进行pH和温度的双参数测量。建立了双参数矩阵,并进行了验证实验。结果表明,pH和温度的测量误差分别可低至0.088°C和1.112°C。该传感器在环境监测、化学分析等相关领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual parametric simultaneous measurement of pH and temperature based on optical fiber interference and silanized pH-responsive hydrogel
A no-core and few-mode fiber-based structure coating with polyacrylic acid acrylamide hydrogel is used to realize pH and temperature measurement simultaneously. The proposed structure can be obtained through splicing the no-core fiber, few-mode fiber and no-core fiber (NFN) with a certain length in sequence. Its measurement range can cover 2 to 12 for pH and 20 °C to 90 °C for temperature. Meanwhile, surface silanization of the optical fiber is performed to facilitate the adhesion of the hydrogel and to refine the silanization process. The pH-based transmission-sensitivity is measured to be 0.959 dB/pH and the highest pH-based wavelength-sensitivity is 0.837 nm/pH. The temperature-based wavelength-sensitivities are measured to be 0.01 nm/°C and 0.02 nm/°C, respectively, in two different pH environments of 2 ∼ 5 and 5 ∼ 12, while the temperature-based transmission-sensitivities are measured to be 0.432 dB/°C and 0.356 dB/°C, respectively. The pH response of hydrogel and inherent temperature response of NFN-based Mach-Zehnder interferometer enable the sensor to perform dual parameter measurements for pH and temperature. The dual-parameter matrices are established and validation experiments are carried out. It is demonstrated that the pH and temperature measurement errors can be as low as 0.088 and 1.112°C respectively. This sensor is expected to have broad prospects in environmental monitoring, chemical analysis, and other related fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
期刊最新文献
Shape sensing technology based on fiber Bragg grating for flexible instrument Characterization and visualization of gas–liquid two-phase flow based on wire-mesh sensor Optimizing the quality characteristics of glass composite vias for RF-MEMS using central composite design, metaheuristics, and bayesian regularization-based machine learning Opto-mechanical-thermal integration design of the primary optical system for a tri-band aviation camera Calibration of multi-robot coordinates for collaborative wire arc additive manufacturing using cross-source 3D point cloud models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1