MP-KAN:一种有效的基于Kolmogorov-Arnold网络的磁定位算法

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Pub Date : 2024-11-19 DOI:10.1016/j.measurement.2024.116248
Zibo Gao, Ming Kong
{"title":"MP-KAN:一种有效的基于Kolmogorov-Arnold网络的磁定位算法","authors":"Zibo Gao,&nbsp;Ming Kong","doi":"10.1016/j.measurement.2024.116248","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic Positioning (MP) technology represents a novel approach to locating spatial particles, notably medical capsules, wherein the inherently weak and susceptible-to-interference magnetic signals pose stringent demands on spatial positioning algorithms. Traditional methods are usually limited to polynomial fitting, which limits the generalization of the algorithm and the positioning accuracy of the near field part. In this paper, we introduce a magnetic positioning algorithm grounded in the Kolmogorov-Arnold network (MP-KAN), innovatively introduces the neural network method into the magnetic positioning system, providing a novel research idea for the positioning algorithm. Distinguishing from the learnable weight parameters inherent in the traditional model, the KAN network introduces a learnable activation function formulated through spline functions. This innovation enhances model accuracy by leveraging multiple spline curves and executing summation operations at nodes to facilitate regression predictions. Furthermore, the residual of the predicted position and the L1-parameter in the KAN layer and its entropy regularization are used as the prediction loss, and thresholds are strategically set at the network nodes to enhance the generalization ability of the model and obtain the optimal configuration. The proposed method achieves the goal of improving the positioning accuracy of the system while ensuring that the algorithm has a nearly constant positioning accuracy regardless of the distance between the target and the measurement system. The results of an experimental demonstrate that the maximum positioning error within the data set stands at 0.24 mm, the maximum relative error is 5.72 %, the minimum relative error is 0.25 %.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"243 ","pages":"Article 116248"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MP-KAN: An effective magnetic positioning algorithm based on Kolmogorov-Arnold network\",\"authors\":\"Zibo Gao,&nbsp;Ming Kong\",\"doi\":\"10.1016/j.measurement.2024.116248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Magnetic Positioning (MP) technology represents a novel approach to locating spatial particles, notably medical capsules, wherein the inherently weak and susceptible-to-interference magnetic signals pose stringent demands on spatial positioning algorithms. Traditional methods are usually limited to polynomial fitting, which limits the generalization of the algorithm and the positioning accuracy of the near field part. In this paper, we introduce a magnetic positioning algorithm grounded in the Kolmogorov-Arnold network (MP-KAN), innovatively introduces the neural network method into the magnetic positioning system, providing a novel research idea for the positioning algorithm. Distinguishing from the learnable weight parameters inherent in the traditional model, the KAN network introduces a learnable activation function formulated through spline functions. This innovation enhances model accuracy by leveraging multiple spline curves and executing summation operations at nodes to facilitate regression predictions. Furthermore, the residual of the predicted position and the L1-parameter in the KAN layer and its entropy regularization are used as the prediction loss, and thresholds are strategically set at the network nodes to enhance the generalization ability of the model and obtain the optimal configuration. The proposed method achieves the goal of improving the positioning accuracy of the system while ensuring that the algorithm has a nearly constant positioning accuracy regardless of the distance between the target and the measurement system. The results of an experimental demonstrate that the maximum positioning error within the data set stands at 0.24 mm, the maximum relative error is 5.72 %, the minimum relative error is 0.25 %.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"243 \",\"pages\":\"Article 116248\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026322412402133X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026322412402133X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁定位(MP)技术代表了一种定位空间粒子,特别是医用胶囊的新方法,其中磁信号固有的微弱和易受干扰,对空间定位算法提出了严格的要求。传统的方法通常局限于多项式拟合,这限制了算法的泛化和近场部分的定位精度。本文介绍了一种基于Kolmogorov-Arnold网络(MP-KAN)的磁定位算法,创新性地将神经网络方法引入到磁定位系统中,为定位算法提供了一种新的研究思路。与传统模型固有的可学习权参数不同,KAN网络引入了由样条函数表示的可学习激活函数。这一创新通过利用多个样条曲线和在节点上执行求和操作来促进回归预测,从而提高了模型的准确性。利用预测位置和KAN层l1参数的残差及其熵正则化作为预测损失,并在网络节点上有策略地设置阈值,增强模型的泛化能力,获得最优配置。所提出的方法在保证无论目标与测量系统之间的距离如何,算法都具有几乎恒定的定位精度的同时,达到了提高系统定位精度的目的。实验结果表明,数据集内的最大定位误差为0.24 mm,最大相对误差为5.72%,最小相对误差为0.25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MP-KAN: An effective magnetic positioning algorithm based on Kolmogorov-Arnold network
Magnetic Positioning (MP) technology represents a novel approach to locating spatial particles, notably medical capsules, wherein the inherently weak and susceptible-to-interference magnetic signals pose stringent demands on spatial positioning algorithms. Traditional methods are usually limited to polynomial fitting, which limits the generalization of the algorithm and the positioning accuracy of the near field part. In this paper, we introduce a magnetic positioning algorithm grounded in the Kolmogorov-Arnold network (MP-KAN), innovatively introduces the neural network method into the magnetic positioning system, providing a novel research idea for the positioning algorithm. Distinguishing from the learnable weight parameters inherent in the traditional model, the KAN network introduces a learnable activation function formulated through spline functions. This innovation enhances model accuracy by leveraging multiple spline curves and executing summation operations at nodes to facilitate regression predictions. Furthermore, the residual of the predicted position and the L1-parameter in the KAN layer and its entropy regularization are used as the prediction loss, and thresholds are strategically set at the network nodes to enhance the generalization ability of the model and obtain the optimal configuration. The proposed method achieves the goal of improving the positioning accuracy of the system while ensuring that the algorithm has a nearly constant positioning accuracy regardless of the distance between the target and the measurement system. The results of an experimental demonstrate that the maximum positioning error within the data set stands at 0.24 mm, the maximum relative error is 5.72 %, the minimum relative error is 0.25 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
期刊最新文献
Shape sensing technology based on fiber Bragg grating for flexible instrument Characterization and visualization of gas–liquid two-phase flow based on wire-mesh sensor Optimizing the quality characteristics of glass composite vias for RF-MEMS using central composite design, metaheuristics, and bayesian regularization-based machine learning Opto-mechanical-thermal integration design of the primary optical system for a tri-band aviation camera Calibration of multi-robot coordinates for collaborative wire arc additive manufacturing using cross-source 3D point cloud models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1