基于鲁棒深度强化学习的考虑输电网电压波动的多馈线配电网分布式电压控制

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS Applied Energy Pub Date : 2024-11-29 DOI:10.1016/j.apenergy.2024.124984
Zhi Wu , Yiqi Li , Xiao Zhang , Shu Zheng , Jingtao Zhao
{"title":"基于鲁棒深度强化学习的考虑输电网电压波动的多馈线配电网分布式电压控制","authors":"Zhi Wu ,&nbsp;Yiqi Li ,&nbsp;Xiao Zhang ,&nbsp;Shu Zheng ,&nbsp;Jingtao Zhao","doi":"10.1016/j.apenergy.2024.124984","DOIUrl":null,"url":null,"abstract":"<div><div>In the multi-feeder distribution network, the power balance between photovoltaics generations and load demands across regions is more complex. To solve the above problems, this paper proposes a multi-agent distributed voltage control strategy based on robust deep reinforcement learning to reduce voltage deviation. The whole multi-feeder distribution network is divided into a main agent and several sub-agents, and a multi-agent distributed voltage control model considering the transmission network voltage fluctuations and the corresponding power fluctuations is established. Based on the information uploaded by sub-agents, the main agent models the uncertainty of the transmission network voltage fluctuations and the corresponding power fluctuations as a disturbance to the state, and a RDRL method is employed to determine the tap position of on-load tap changer. Furtherly, each sub-agent uses the second-order cone relaxation technique to adjust the reactive power outputs of the inverters on each feeder. The effectiveness of the proposed method has been verified in two real-world multi-feeder systems. The results show that the proposed method can achieve millisecond-level decision-making, with a voltage deviation only 1.28 % higher than the global optimal results, achieving near-optimal control. The proposed method also demonstrates robustness in handling transmission network uncertainties and partial measurement loss.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"379 ","pages":"Article 124984"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed voltage control for multi-feeder distribution networks considering transmission network voltage fluctuation based on robust deep reinforcement learning\",\"authors\":\"Zhi Wu ,&nbsp;Yiqi Li ,&nbsp;Xiao Zhang ,&nbsp;Shu Zheng ,&nbsp;Jingtao Zhao\",\"doi\":\"10.1016/j.apenergy.2024.124984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the multi-feeder distribution network, the power balance between photovoltaics generations and load demands across regions is more complex. To solve the above problems, this paper proposes a multi-agent distributed voltage control strategy based on robust deep reinforcement learning to reduce voltage deviation. The whole multi-feeder distribution network is divided into a main agent and several sub-agents, and a multi-agent distributed voltage control model considering the transmission network voltage fluctuations and the corresponding power fluctuations is established. Based on the information uploaded by sub-agents, the main agent models the uncertainty of the transmission network voltage fluctuations and the corresponding power fluctuations as a disturbance to the state, and a RDRL method is employed to determine the tap position of on-load tap changer. Furtherly, each sub-agent uses the second-order cone relaxation technique to adjust the reactive power outputs of the inverters on each feeder. The effectiveness of the proposed method has been verified in two real-world multi-feeder systems. The results show that the proposed method can achieve millisecond-level decision-making, with a voltage deviation only 1.28 % higher than the global optimal results, achieving near-optimal control. The proposed method also demonstrates robustness in handling transmission network uncertainties and partial measurement loss.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"379 \",\"pages\":\"Article 124984\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261924023687\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924023687","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在多馈线配电网中,光伏发电机组之间的功率平衡和跨区域的负荷需求更为复杂。针对上述问题,本文提出了一种基于鲁棒深度强化学习的多智能体分布式电压控制策略,以减小电压偏差。将整个多馈线配电网划分为一个主agent和几个子agent,建立了考虑输电网电压波动和相应功率波动的多agent分布式电压控制模型。基于子agent上传的信息,主agent将输电网电压波动和相应功率波动的不确定性作为状态扰动进行建模,并采用RDRL方法确定有载分接开关的分接位置。此外,每个子智能体使用二阶锥松弛技术来调节每个馈线上逆变器的无功输出。在两个实际的多馈线系统中验证了该方法的有效性。结果表明,该方法可以实现毫秒级的决策,电压偏差仅比全局最优结果高1.28%,实现了近最优控制。该方法在处理传输网络不确定性和部分测量损失方面具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed voltage control for multi-feeder distribution networks considering transmission network voltage fluctuation based on robust deep reinforcement learning
In the multi-feeder distribution network, the power balance between photovoltaics generations and load demands across regions is more complex. To solve the above problems, this paper proposes a multi-agent distributed voltage control strategy based on robust deep reinforcement learning to reduce voltage deviation. The whole multi-feeder distribution network is divided into a main agent and several sub-agents, and a multi-agent distributed voltage control model considering the transmission network voltage fluctuations and the corresponding power fluctuations is established. Based on the information uploaded by sub-agents, the main agent models the uncertainty of the transmission network voltage fluctuations and the corresponding power fluctuations as a disturbance to the state, and a RDRL method is employed to determine the tap position of on-load tap changer. Furtherly, each sub-agent uses the second-order cone relaxation technique to adjust the reactive power outputs of the inverters on each feeder. The effectiveness of the proposed method has been verified in two real-world multi-feeder systems. The results show that the proposed method can achieve millisecond-level decision-making, with a voltage deviation only 1.28 % higher than the global optimal results, achieving near-optimal control. The proposed method also demonstrates robustness in handling transmission network uncertainties and partial measurement loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
期刊最新文献
Gearbox pump failure prognostics in offshore wind turbine by an integrated data-driven model Capacity fade-aware parameter identification of zero-dimensional model for vanadium redox flow batteries Can government green discourse-behavior congruence mitigate carbon emissions? A polynomial regression with response surface analysis Passive thermal management of CO2 Methanation using phase change material with high thermal conductivity Energy systems integration and sector coupling in future ports: A qualitative study of Norwegian ports
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1