迈向准确的机器学习预测ATP酶解时P-O键切割的性质

IF 1.8 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Mendeleev Communications Pub Date : 2024-11-01 DOI:10.1016/j.mencom.2024.10.003
Igor V. Polyakov , Kirill D. Miroshnichenko , Tatiana I. Mulashkina , Alexander A. Moskovsky , Ekaterina I. Marchenko , Maria G. Khrenova
{"title":"迈向准确的机器学习预测ATP酶解时P-O键切割的性质","authors":"Igor V. Polyakov ,&nbsp;Kirill D. Miroshnichenko ,&nbsp;Tatiana I. Mulashkina ,&nbsp;Alexander A. Moskovsky ,&nbsp;Ekaterina I. Marchenko ,&nbsp;Maria G. Khrenova","doi":"10.1016/j.mencom.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>Molecular dynamic simulations using QM/MM potentials are performed for the enzyme–substrate complex of adenosine triphosphate (ATP) with the motor protein myosin. Machine learning methods are applied to a dataset consisting of the geometry parameters of the active site in the enzyme–substrate complex to predict the Laplacian of electron density at the bond critical point of the P<sub>G</sub>–O<sub>3B</sub> bond being broken in ATP. Using a gradient boosting machine learning model, a mean absolute error of 0.01 a.u. and an <em>R</em><sup>2</sup> score of 0.99 are achieved, and it is found that the P<sub>G</sub>–O<sub>3B</sub> bond length is the most important feature, contributing 2/3, while other geometry features contribute 1/3.</div></div>","PeriodicalId":18542,"journal":{"name":"Mendeleev Communications","volume":"34 6","pages":"Pages 776-779"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards accurate machine learning predictions of properties of the P–O bond cleaving in ATP upon enzymatic hydrolysis\",\"authors\":\"Igor V. Polyakov ,&nbsp;Kirill D. Miroshnichenko ,&nbsp;Tatiana I. Mulashkina ,&nbsp;Alexander A. Moskovsky ,&nbsp;Ekaterina I. Marchenko ,&nbsp;Maria G. Khrenova\",\"doi\":\"10.1016/j.mencom.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Molecular dynamic simulations using QM/MM potentials are performed for the enzyme–substrate complex of adenosine triphosphate (ATP) with the motor protein myosin. Machine learning methods are applied to a dataset consisting of the geometry parameters of the active site in the enzyme–substrate complex to predict the Laplacian of electron density at the bond critical point of the P<sub>G</sub>–O<sub>3B</sub> bond being broken in ATP. Using a gradient boosting machine learning model, a mean absolute error of 0.01 a.u. and an <em>R</em><sup>2</sup> score of 0.99 are achieved, and it is found that the P<sub>G</sub>–O<sub>3B</sub> bond length is the most important feature, contributing 2/3, while other geometry features contribute 1/3.</div></div>\",\"PeriodicalId\":18542,\"journal\":{\"name\":\"Mendeleev Communications\",\"volume\":\"34 6\",\"pages\":\"Pages 776-779\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mendeleev Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959943624003018\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mendeleev Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959943624003018","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用QM/MM电位对三磷酸腺苷(ATP)与运动蛋白肌球蛋白的酶-底物复合物进行了分子动力学模拟。将机器学习方法应用于由酶-底物复合物中活性位点几何参数组成的数据集,以预测PG-O3B键在ATP中断裂的键临界点处的电子密度拉普拉斯。使用梯度增强机器学习模型,平均绝对误差为0.01 a.u., R2评分为0.99,发现PG-O3B键长是最重要的特征,贡献了2/3,而其他几何特征贡献了1/3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards accurate machine learning predictions of properties of the P–O bond cleaving in ATP upon enzymatic hydrolysis
Molecular dynamic simulations using QM/MM potentials are performed for the enzyme–substrate complex of adenosine triphosphate (ATP) with the motor protein myosin. Machine learning methods are applied to a dataset consisting of the geometry parameters of the active site in the enzyme–substrate complex to predict the Laplacian of electron density at the bond critical point of the PG–O3B bond being broken in ATP. Using a gradient boosting machine learning model, a mean absolute error of 0.01 a.u. and an R2 score of 0.99 are achieved, and it is found that the PG–O3B bond length is the most important feature, contributing 2/3, while other geometry features contribute 1/3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mendeleev Communications
Mendeleev Communications 化学-化学综合
CiteScore
3.00
自引率
21.10%
发文量
226
审稿时长
4-8 weeks
期刊介绍: Mendeleev Communications is the journal of the Russian Academy of Sciences, launched jointly by the Academy of Sciences of the USSR and the Royal Society of Chemistry (United Kingdom) in 1991. Starting from 1st January 2007, Elsevier is the new publishing partner of Mendeleev Communications. Mendeleev Communications publishes short communications in chemistry. The journal primarily features papers from the Russian Federation and the other states of the former USSR. However, it also includes papers by authors from other parts of the world. Mendeleev Communications is not a translated journal, but instead is published directly in English. The International Editorial Board is composed of eminent scientists who provide advice on refereeing policy.
期刊最新文献
Editorial Board Towards machine learning prediction of the fluorescent protein absorption spectra On evaluating the possibility of synthesizing virtually designed polymers Molecular dynamics simulation of the formation of carbon structures during carbon vapor deposition on Ni substrate BeO analogues of annulated cyclooctatetraene and cyclodecapentaene as new inorganic species with unusual multiple hypervalent O∙∙∙O interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1