基于组合视场测量系统的中大型航段协同对接策略

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Pub Date : 2024-11-26 DOI:10.1016/j.measurement.2024.116313
Panping Xu , Liqiang Zhang , Meihua Zhang , Yongqiao Jin , Nan Wu , Tong Yang , Jing Shi
{"title":"基于组合视场测量系统的中大型航段协同对接策略","authors":"Panping Xu ,&nbsp;Liqiang Zhang ,&nbsp;Meihua Zhang ,&nbsp;Yongqiao Jin ,&nbsp;Nan Wu ,&nbsp;Tong Yang ,&nbsp;Jing Shi","doi":"10.1016/j.measurement.2024.116313","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of the aerospace industry, achieving high-precision and high-efficiency assembly and docking of spacecraft segments (such as missiles, airplanes, and rockets) has become an urgent challenge to overcome. Given the assembly demand of the segment pose-adjustment and docking, a pose-adjustment measurement network of the cabin segment was constructed under a large field of view in this study. Then a cooperative docking strategy was proposed for docking and assembly of large segment-type components by taking the major difficulties in large component pose-adjustment and docking technology as an entry point. Considering the limitations of the traditional least squares-based pose conversion method, a combined measurement pose conversion method was proposed based on the weighted overall least squares (WOLS) method, and the error threshold iteration is used to improve the conversion accuracy, so that the overall pose conversion accuracy of the feature points is about 0.028 mm. Additionally, regarding the pose adjustment of cabin segments, this study refines the inverse solution pose model and proposes a pose inverse solution method for the parallel robot using the quaternion approach, which results in an accuracy of about 0.036 mm in the pose movement. Meanwhile, considering the influence of complex factors on docking accuracy, we propose a comprehensive assessment model of attitude adjustment accuracy based on the extreme value method, and calculate that the docking accuracy of cabin segment pose adjustment under this strategy is about 0.0814 mm. Finally, this study presents accuracy simulations and on-site docking experiments. The experimental results indicate that the cooperative docking strategy improves the accuracy of feature point pose conversion by 7.14 % and the stability of the pose inverse solution of the pose-adjustment mechanism by 4.2 %. This meets the accuracy requirements, enhances docking efficiency, and demonstrates feasibility in engineering practice.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"242 ","pages":"Article 116313"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A collaborative docking strategy for medium-to-large segments based on the combined field-of-view measurement system\",\"authors\":\"Panping Xu ,&nbsp;Liqiang Zhang ,&nbsp;Meihua Zhang ,&nbsp;Yongqiao Jin ,&nbsp;Nan Wu ,&nbsp;Tong Yang ,&nbsp;Jing Shi\",\"doi\":\"10.1016/j.measurement.2024.116313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the rapid development of the aerospace industry, achieving high-precision and high-efficiency assembly and docking of spacecraft segments (such as missiles, airplanes, and rockets) has become an urgent challenge to overcome. Given the assembly demand of the segment pose-adjustment and docking, a pose-adjustment measurement network of the cabin segment was constructed under a large field of view in this study. Then a cooperative docking strategy was proposed for docking and assembly of large segment-type components by taking the major difficulties in large component pose-adjustment and docking technology as an entry point. Considering the limitations of the traditional least squares-based pose conversion method, a combined measurement pose conversion method was proposed based on the weighted overall least squares (WOLS) method, and the error threshold iteration is used to improve the conversion accuracy, so that the overall pose conversion accuracy of the feature points is about 0.028 mm. Additionally, regarding the pose adjustment of cabin segments, this study refines the inverse solution pose model and proposes a pose inverse solution method for the parallel robot using the quaternion approach, which results in an accuracy of about 0.036 mm in the pose movement. Meanwhile, considering the influence of complex factors on docking accuracy, we propose a comprehensive assessment model of attitude adjustment accuracy based on the extreme value method, and calculate that the docking accuracy of cabin segment pose adjustment under this strategy is about 0.0814 mm. Finally, this study presents accuracy simulations and on-site docking experiments. The experimental results indicate that the cooperative docking strategy improves the accuracy of feature point pose conversion by 7.14 % and the stability of the pose inverse solution of the pose-adjustment mechanism by 4.2 %. This meets the accuracy requirements, enhances docking efficiency, and demonstrates feasibility in engineering practice.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"242 \",\"pages\":\"Article 116313\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224124021985\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224124021985","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着航天工业的快速发展,实现航天器(如导弹、飞机、火箭等)部件的高精度、高效率装配与对接已成为迫切需要克服的挑战。考虑到分段位姿调整与对接的装配需求,本研究构建了大视场下的舱室分段位姿调整测量网络。然后,以大型部件位姿调整和对接技术难点为切入点,提出了大型节段型部件对接装配的协同对接策略。针对传统基于最小二乘的姿态转换方法的局限性,提出了一种基于加权整体最小二乘(WOLS)方法的组合测量姿态转换方法,并利用误差阈值迭代提高转换精度,使特征点的整体姿态转换精度约为0.028 mm。此外,针对座舱段的位姿调整,本文对位姿反解模型进行了细化,提出了一种采用四元数方法的并联机器人位姿反解方法,位姿运动精度约为0.036 mm。同时,考虑复杂因素对对接精度的影响,提出了一种基于极值法的姿态调整精度综合评估模型,并计算出该策略下舱段位姿调整的对接精度约为0.0814 mm。最后,进行了精度仿真和现场对接实验。实验结果表明,该协同对接策略使特征点位姿转换精度提高了7.14%,位姿调整机构位姿逆解的稳定性提高了4.2%。满足了精度要求,提高了对接效率,在工程实践中具有可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A collaborative docking strategy for medium-to-large segments based on the combined field-of-view measurement system
With the rapid development of the aerospace industry, achieving high-precision and high-efficiency assembly and docking of spacecraft segments (such as missiles, airplanes, and rockets) has become an urgent challenge to overcome. Given the assembly demand of the segment pose-adjustment and docking, a pose-adjustment measurement network of the cabin segment was constructed under a large field of view in this study. Then a cooperative docking strategy was proposed for docking and assembly of large segment-type components by taking the major difficulties in large component pose-adjustment and docking technology as an entry point. Considering the limitations of the traditional least squares-based pose conversion method, a combined measurement pose conversion method was proposed based on the weighted overall least squares (WOLS) method, and the error threshold iteration is used to improve the conversion accuracy, so that the overall pose conversion accuracy of the feature points is about 0.028 mm. Additionally, regarding the pose adjustment of cabin segments, this study refines the inverse solution pose model and proposes a pose inverse solution method for the parallel robot using the quaternion approach, which results in an accuracy of about 0.036 mm in the pose movement. Meanwhile, considering the influence of complex factors on docking accuracy, we propose a comprehensive assessment model of attitude adjustment accuracy based on the extreme value method, and calculate that the docking accuracy of cabin segment pose adjustment under this strategy is about 0.0814 mm. Finally, this study presents accuracy simulations and on-site docking experiments. The experimental results indicate that the cooperative docking strategy improves the accuracy of feature point pose conversion by 7.14 % and the stability of the pose inverse solution of the pose-adjustment mechanism by 4.2 %. This meets the accuracy requirements, enhances docking efficiency, and demonstrates feasibility in engineering practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
期刊最新文献
Shape sensing technology based on fiber Bragg grating for flexible instrument Characterization and visualization of gas–liquid two-phase flow based on wire-mesh sensor Optimizing the quality characteristics of glass composite vias for RF-MEMS using central composite design, metaheuristics, and bayesian regularization-based machine learning Opto-mechanical-thermal integration design of the primary optical system for a tri-band aviation camera Calibration of multi-robot coordinates for collaborative wire arc additive manufacturing using cross-source 3D point cloud models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1