基于全局-局部深度去模糊和Rauch-Tung-Striebel平滑的多视觉位移监测

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Pub Date : 2024-11-26 DOI:10.1016/j.measurement.2024.116292
Peng “Patrick” Sun , Mohammad Vasef , Lin Chen
{"title":"基于全局-局部深度去模糊和Rauch-Tung-Striebel平滑的多视觉位移监测","authors":"Peng “Patrick” Sun ,&nbsp;Mohammad Vasef ,&nbsp;Lin Chen","doi":"10.1016/j.measurement.2024.116292","DOIUrl":null,"url":null,"abstract":"<div><div>Measuring structural vibrations help assess dynamic performances of civil structures and infrastructure. Although conventional displacement sensors have been widely adopted, they are contact-based methods which lack scalability. Recently, computer vision (CV) has been applied as a noncontact method to measure displacements. However, fast speed of structural vibration (e.g., in shake table tests) can inevitably cause motion blur that imposes challenges in all image-based object/feature detections, especially for normal portable cameras (without high-speed shutters). To address such issue, the study proposed a multi-vision, full-field sensing framework with affordable cameras using a novel global–local detection and deblurring (GLDD) module, which was designed with a generative adversarial network (GAN)-based deblurring model to enhance detection efficiency and accuracy by restoring blemished videos from multiple perspectives. Rauch-Tung-Striebel (RTS) smoother was studied for data fitting using incomplete observations caused due to severe motion-induced blurs. A shake table test was conducted on an aluminum frame with cameras and conventional sensors monitoring the structural vibrations. Fiducial markers were used to track the movement of the key locations on the structure. Results showed that the proposed method is satisfactory to monitor shake table tests when compared to conventional measurements with root-mean-square errors of 0.51–0.95 mm. The proposed deblurring module restored misdetection by 92.1 %, 50.6 %, and 25.2 % for mild-, medium-, and severe-level motion blurs, respectively. Smoother-based data fitting outperformed filter-based one when dealing with highly blemished images. The proposed monitoring system with GLDD and RTS smoother-based data fitting provides a robust measurement solution when dealing with motion blurs.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"242 ","pages":"Article 116292"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-vision-based displacement monitoring using global-local deep deblurring and Rauch-Tung-Striebel smoother\",\"authors\":\"Peng “Patrick” Sun ,&nbsp;Mohammad Vasef ,&nbsp;Lin Chen\",\"doi\":\"10.1016/j.measurement.2024.116292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Measuring structural vibrations help assess dynamic performances of civil structures and infrastructure. Although conventional displacement sensors have been widely adopted, they are contact-based methods which lack scalability. Recently, computer vision (CV) has been applied as a noncontact method to measure displacements. However, fast speed of structural vibration (e.g., in shake table tests) can inevitably cause motion blur that imposes challenges in all image-based object/feature detections, especially for normal portable cameras (without high-speed shutters). To address such issue, the study proposed a multi-vision, full-field sensing framework with affordable cameras using a novel global–local detection and deblurring (GLDD) module, which was designed with a generative adversarial network (GAN)-based deblurring model to enhance detection efficiency and accuracy by restoring blemished videos from multiple perspectives. Rauch-Tung-Striebel (RTS) smoother was studied for data fitting using incomplete observations caused due to severe motion-induced blurs. A shake table test was conducted on an aluminum frame with cameras and conventional sensors monitoring the structural vibrations. Fiducial markers were used to track the movement of the key locations on the structure. Results showed that the proposed method is satisfactory to monitor shake table tests when compared to conventional measurements with root-mean-square errors of 0.51–0.95 mm. The proposed deblurring module restored misdetection by 92.1 %, 50.6 %, and 25.2 % for mild-, medium-, and severe-level motion blurs, respectively. Smoother-based data fitting outperformed filter-based one when dealing with highly blemished images. The proposed monitoring system with GLDD and RTS smoother-based data fitting provides a robust measurement solution when dealing with motion blurs.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"242 \",\"pages\":\"Article 116292\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224124021778\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224124021778","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

测量结构振动有助于评估土木结构和基础设施的动力性能。传统的位移传感器虽然被广泛采用,但它们是基于接触的方法,缺乏可扩展性。近年来,计算机视觉(CV)作为一种非接触式的位移测量方法得到了广泛的应用。然而,快速的结构振动(例如,在振动台测试中)不可避免地会导致运动模糊,这对所有基于图像的对象/特征检测都构成了挑战,特别是对于普通便携式相机(没有高速快门)。为了解决这一问题,该研究提出了一种多视觉、全视野的传感框架,该框架使用一种新型的全局局部检测和去模糊(GLDD)模块,该模块设计了一个基于生成对抗网络(GAN)的去模糊模型,通过从多个角度恢复有缺陷的视频来提高检测效率和准确性。Rauch-Tung-Striebel (RTS)平滑研究了由于严重的运动引起的模糊而导致的不完整观测数据拟合。在一个铝制框架上进行了振动台试验,并安装了摄像头和传统传感器来监测结构振动。基准标记用于跟踪结构上关键位置的运动。结果表明,与常规测量方法相比,该方法能较好地监测振动台试验,均方根误差为0.51 ~ 0.95 mm。所提出的去模糊模块对轻度、中度和重度运动模糊的误检率分别为92.1%、50.6%和25.2%。在处理高度瑕疵的图像时,基于平滑的数据拟合优于基于滤波器的数据拟合。基于GLDD和RTS平滑数据拟合的监测系统在处理运动模糊时提供了一个强大的测量解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-vision-based displacement monitoring using global-local deep deblurring and Rauch-Tung-Striebel smoother
Measuring structural vibrations help assess dynamic performances of civil structures and infrastructure. Although conventional displacement sensors have been widely adopted, they are contact-based methods which lack scalability. Recently, computer vision (CV) has been applied as a noncontact method to measure displacements. However, fast speed of structural vibration (e.g., in shake table tests) can inevitably cause motion blur that imposes challenges in all image-based object/feature detections, especially for normal portable cameras (without high-speed shutters). To address such issue, the study proposed a multi-vision, full-field sensing framework with affordable cameras using a novel global–local detection and deblurring (GLDD) module, which was designed with a generative adversarial network (GAN)-based deblurring model to enhance detection efficiency and accuracy by restoring blemished videos from multiple perspectives. Rauch-Tung-Striebel (RTS) smoother was studied for data fitting using incomplete observations caused due to severe motion-induced blurs. A shake table test was conducted on an aluminum frame with cameras and conventional sensors monitoring the structural vibrations. Fiducial markers were used to track the movement of the key locations on the structure. Results showed that the proposed method is satisfactory to monitor shake table tests when compared to conventional measurements with root-mean-square errors of 0.51–0.95 mm. The proposed deblurring module restored misdetection by 92.1 %, 50.6 %, and 25.2 % for mild-, medium-, and severe-level motion blurs, respectively. Smoother-based data fitting outperformed filter-based one when dealing with highly blemished images. The proposed monitoring system with GLDD and RTS smoother-based data fitting provides a robust measurement solution when dealing with motion blurs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
期刊最新文献
Shape sensing technology based on fiber Bragg grating for flexible instrument Characterization and visualization of gas–liquid two-phase flow based on wire-mesh sensor Optimizing the quality characteristics of glass composite vias for RF-MEMS using central composite design, metaheuristics, and bayesian regularization-based machine learning Opto-mechanical-thermal integration design of the primary optical system for a tri-band aviation camera Calibration of multi-robot coordinates for collaborative wire arc additive manufacturing using cross-source 3D point cloud models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1