基于强化学习的不确定系统的预定义时间收敛保证性能控制

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-11-29 DOI:10.1016/j.engappai.2024.109734
Chun-Wu Yin
{"title":"基于强化学习的不确定系统的预定义时间收敛保证性能控制","authors":"Chun-Wu Yin","doi":"10.1016/j.engappai.2024.109734","DOIUrl":null,"url":null,"abstract":"<div><div>The prescribed performance control method (PPCM) is commonly employed to ensure the guaranteed performance control of non-linear systems. However, traditional approaches suffer from certain drawbacks, such as the dependence of parameter settings for the performance constraint function on the initial tracking error value and the inability to specify the convergence time of tracking error according to engineering requirements. This paper focuses on designing a fault tolerant control strategy with prescribed convergence time and prescribed transient performance for uncertain systems, considering parameter perturbance, actuator faults, and unknown initial states. Firstly, we introduce an error conversion function that transforms the tracking error with any initial value into a new error variable starting from zero. This resolves the issue of depending on the initial value of tracking error in setting parameters for the performance constraint function in prescribed performance control methods. Subsequently, we derive a novel Lyapunov stability criterion for predefined time (PDT) convergence and design a fault-tolerant control strategy using backstepping control method while ensuring prescribed convergence time and prescribed performance. In this approach, we propose a new online reinforcement learning intelligent algorithm to estimate compound interference caused by actuator faults, control saturation constraint increment, system parameter perturbation, and external interference. The theoretical proof establishes predefined time convergence of the closed-loop system. Finally, numerical simulations are conducted on industrial robots with actuator faults to validate the effectiveness of our designed control strategy.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"140 ","pages":"Article 109734"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predefined time convergence guaranteed performance control for uncertain systems based on reinforcement learning\",\"authors\":\"Chun-Wu Yin\",\"doi\":\"10.1016/j.engappai.2024.109734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The prescribed performance control method (PPCM) is commonly employed to ensure the guaranteed performance control of non-linear systems. However, traditional approaches suffer from certain drawbacks, such as the dependence of parameter settings for the performance constraint function on the initial tracking error value and the inability to specify the convergence time of tracking error according to engineering requirements. This paper focuses on designing a fault tolerant control strategy with prescribed convergence time and prescribed transient performance for uncertain systems, considering parameter perturbance, actuator faults, and unknown initial states. Firstly, we introduce an error conversion function that transforms the tracking error with any initial value into a new error variable starting from zero. This resolves the issue of depending on the initial value of tracking error in setting parameters for the performance constraint function in prescribed performance control methods. Subsequently, we derive a novel Lyapunov stability criterion for predefined time (PDT) convergence and design a fault-tolerant control strategy using backstepping control method while ensuring prescribed convergence time and prescribed performance. In this approach, we propose a new online reinforcement learning intelligent algorithm to estimate compound interference caused by actuator faults, control saturation constraint increment, system parameter perturbation, and external interference. The theoretical proof establishes predefined time convergence of the closed-loop system. Finally, numerical simulations are conducted on industrial robots with actuator faults to validate the effectiveness of our designed control strategy.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"140 \",\"pages\":\"Article 109734\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095219762401892X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095219762401892X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

一般采用规定性能控制方法(PPCM)来保证非线性系统的保性能控制。然而,传统方法存在性能约束函数的参数设置依赖于初始跟踪误差值,不能根据工程要求指定跟踪误差的收敛时间等缺点。针对不确定系统,考虑参数扰动、执行器故障和初始状态未知等因素,设计了一种收敛时间和暂态性能均为规定的容错控制策略。首先,引入误差转换函数,将具有任意初始值的跟踪误差转换为从零开始的新误差变量。这就解决了在规定的性能控制方法中,对性能约束函数的参数设置依赖于跟踪误差初始值的问题。在此基础上,提出了一种新的PDT收敛Lyapunov稳定性判据,并在保证规定收敛时间和规定性能的前提下,采用后退控制方法设计了容错控制策略。在该方法中,我们提出了一种新的在线强化学习智能算法来估计由执行器故障、控制饱和约束增量、系统参数摄动和外部干扰引起的复合干扰。理论证明建立了闭环系统的预定义时间收敛性。最后,对存在执行器故障的工业机器人进行了数值仿真,验证了所设计控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predefined time convergence guaranteed performance control for uncertain systems based on reinforcement learning
The prescribed performance control method (PPCM) is commonly employed to ensure the guaranteed performance control of non-linear systems. However, traditional approaches suffer from certain drawbacks, such as the dependence of parameter settings for the performance constraint function on the initial tracking error value and the inability to specify the convergence time of tracking error according to engineering requirements. This paper focuses on designing a fault tolerant control strategy with prescribed convergence time and prescribed transient performance for uncertain systems, considering parameter perturbance, actuator faults, and unknown initial states. Firstly, we introduce an error conversion function that transforms the tracking error with any initial value into a new error variable starting from zero. This resolves the issue of depending on the initial value of tracking error in setting parameters for the performance constraint function in prescribed performance control methods. Subsequently, we derive a novel Lyapunov stability criterion for predefined time (PDT) convergence and design a fault-tolerant control strategy using backstepping control method while ensuring prescribed convergence time and prescribed performance. In this approach, we propose a new online reinforcement learning intelligent algorithm to estimate compound interference caused by actuator faults, control saturation constraint increment, system parameter perturbation, and external interference. The theoretical proof establishes predefined time convergence of the closed-loop system. Finally, numerical simulations are conducted on industrial robots with actuator faults to validate the effectiveness of our designed control strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Adaptive model-agnostic meta-learning network for cross-machine fault diagnosis with limited samples Deep interval type-2 generalized fuzzy hyperbolic tangent system for nonlinear regression prediction A multi-scale feature fusion network based on semi-channel attention for seismic phase picking Editorial Board Enhancing camouflaged object detection through contrastive learning and data augmentation techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1