基于表面等离子体共振显微镜的单分子结合动力学免疫传感器的研制

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Pub Date : 2024-11-26 DOI:10.1016/j.measurement.2024.116316
Feifan Zheng , Hao Cai , Fei Wang , Yitao Cao , Honggang Wang , Xianbo Qiu , Yang Zhao , Xinchao Lu , Chengjun Huang , Duli Yu , Lulu Zhang
{"title":"基于表面等离子体共振显微镜的单分子结合动力学免疫传感器的研制","authors":"Feifan Zheng ,&nbsp;Hao Cai ,&nbsp;Fei Wang ,&nbsp;Yitao Cao ,&nbsp;Honggang Wang ,&nbsp;Xianbo Qiu ,&nbsp;Yang Zhao ,&nbsp;Xinchao Lu ,&nbsp;Chengjun Huang ,&nbsp;Duli Yu ,&nbsp;Lulu Zhang","doi":"10.1016/j.measurement.2024.116316","DOIUrl":null,"url":null,"abstract":"<div><div>Surface plasmon resonance (SPR) technology plays a crucial role in kinetic analysis of molecular interactions due to the advantages of real-time, label-free, and high sensitivity. However, most SPR sensors detects the protein interactions with average value of multiple molecules. In this study, we developed a single molecule binding kinetics immunosensor based on surface plasmon resonance microscopy (SPRM). A BSA based biosensor was prepared for immobilizing single molecules and the interaction between human immunoglobulin G (IgG) and its antibodies was investigated showing good concentration response and selectivity. And the molecular height influence on imaging has been observed. Finally, the single, micro, and macroscopic molecule binding kinetics parameters (ka, kd and KD) were calculated and compared revealing higher affinity in single molecule region than the expanded region. It demonstrates the importance of single molecule kinetics, which can be applied to the study of protein heterogeneity analysis.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"242 ","pages":"Article 116316"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of single molecule binding kinetics immunosensor based on surface plasmon resonance microscopy\",\"authors\":\"Feifan Zheng ,&nbsp;Hao Cai ,&nbsp;Fei Wang ,&nbsp;Yitao Cao ,&nbsp;Honggang Wang ,&nbsp;Xianbo Qiu ,&nbsp;Yang Zhao ,&nbsp;Xinchao Lu ,&nbsp;Chengjun Huang ,&nbsp;Duli Yu ,&nbsp;Lulu Zhang\",\"doi\":\"10.1016/j.measurement.2024.116316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Surface plasmon resonance (SPR) technology plays a crucial role in kinetic analysis of molecular interactions due to the advantages of real-time, label-free, and high sensitivity. However, most SPR sensors detects the protein interactions with average value of multiple molecules. In this study, we developed a single molecule binding kinetics immunosensor based on surface plasmon resonance microscopy (SPRM). A BSA based biosensor was prepared for immobilizing single molecules and the interaction between human immunoglobulin G (IgG) and its antibodies was investigated showing good concentration response and selectivity. And the molecular height influence on imaging has been observed. Finally, the single, micro, and macroscopic molecule binding kinetics parameters (ka, kd and KD) were calculated and compared revealing higher affinity in single molecule region than the expanded region. It demonstrates the importance of single molecule kinetics, which can be applied to the study of protein heterogeneity analysis.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"242 \",\"pages\":\"Article 116316\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224124022012\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224124022012","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

表面等离子体共振(SPR)技术具有实时、无标记和高灵敏度等优点,在分子相互作用动力学分析中起着至关重要的作用。然而,大多数SPR传感器检测的是蛋白质相互作用的多分子平均值。在这项研究中,我们开发了一种基于表面等离子体共振显微镜(SPRM)的单分子结合动力学免疫传感器。制备了一种基于牛血清白蛋白的单分子固定化生物传感器,并研究了人免疫球蛋白G (IgG)与其抗体的相互作用,显示出良好的浓度响应和选择性。并观察了分子高度对成像的影响。最后,计算并比较了单分子区、微观区和宏观区分子结合动力学参数(ka、kd和kd),发现单分子区的亲和力高于扩展区的亲和力。这证明了单分子动力学的重要性,可以应用于蛋白质异质性分析的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of single molecule binding kinetics immunosensor based on surface plasmon resonance microscopy
Surface plasmon resonance (SPR) technology plays a crucial role in kinetic analysis of molecular interactions due to the advantages of real-time, label-free, and high sensitivity. However, most SPR sensors detects the protein interactions with average value of multiple molecules. In this study, we developed a single molecule binding kinetics immunosensor based on surface plasmon resonance microscopy (SPRM). A BSA based biosensor was prepared for immobilizing single molecules and the interaction between human immunoglobulin G (IgG) and its antibodies was investigated showing good concentration response and selectivity. And the molecular height influence on imaging has been observed. Finally, the single, micro, and macroscopic molecule binding kinetics parameters (ka, kd and KD) were calculated and compared revealing higher affinity in single molecule region than the expanded region. It demonstrates the importance of single molecule kinetics, which can be applied to the study of protein heterogeneity analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
期刊最新文献
Shape sensing technology based on fiber Bragg grating for flexible instrument Characterization and visualization of gas–liquid two-phase flow based on wire-mesh sensor Optimizing the quality characteristics of glass composite vias for RF-MEMS using central composite design, metaheuristics, and bayesian regularization-based machine learning Opto-mechanical-thermal integration design of the primary optical system for a tri-band aviation camera Calibration of multi-robot coordinates for collaborative wire arc additive manufacturing using cross-source 3D point cloud models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1