通过趋势测试监测语义相关性,揭示公平性和偏见

Jean-Rémi Bourguet , Adama Sow
{"title":"通过趋势测试监测语义相关性,揭示公平性和偏见","authors":"Jean-Rémi Bourguet ,&nbsp;Adama Sow","doi":"10.1016/j.jjimei.2024.100305","DOIUrl":null,"url":null,"abstract":"<div><div>An emerging application domain concerning content-based recommender systems provides a better consideration of the semantics behind textual descriptions. Traditional approaches often miss relevant information due to their sole focus on syntax. However, the Semantic Web community has enriched resources with cultural and linguistic background knowledge, offering new standards for word categorization. This paper proposes a framework that combines the information extractor ReVerb with the WordNet taxonomy to monitor global semantic relatedness scores. Additionally, an experimental validation confronts human-based semantic relatedness scores with theoretical ones, employing Mann–Kendall trend tests to reveal fairness and biases. Overall, our framework introduces a novel approach to semantic relatedness monitoring by providing valuable insights into fairness and biases.</div></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"5 1","pages":"Article 100305"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring semantic relatedness and revealing fairness and biases through trend tests\",\"authors\":\"Jean-Rémi Bourguet ,&nbsp;Adama Sow\",\"doi\":\"10.1016/j.jjimei.2024.100305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An emerging application domain concerning content-based recommender systems provides a better consideration of the semantics behind textual descriptions. Traditional approaches often miss relevant information due to their sole focus on syntax. However, the Semantic Web community has enriched resources with cultural and linguistic background knowledge, offering new standards for word categorization. This paper proposes a framework that combines the information extractor ReVerb with the WordNet taxonomy to monitor global semantic relatedness scores. Additionally, an experimental validation confronts human-based semantic relatedness scores with theoretical ones, employing Mann–Kendall trend tests to reveal fairness and biases. Overall, our framework introduces a novel approach to semantic relatedness monitoring by providing valuable insights into fairness and biases.</div></div>\",\"PeriodicalId\":100699,\"journal\":{\"name\":\"International Journal of Information Management Data Insights\",\"volume\":\"5 1\",\"pages\":\"Article 100305\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Management Data Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667096824000946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667096824000946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关于基于内容的推荐系统的新兴应用领域提供了对文本描述背后语义的更好考虑。传统的方法由于只关注语法而经常错过相关信息。然而,语义Web社区丰富了文化和语言背景知识资源,为词分类提供了新的标准。本文提出了一个将信息提取器ReVerb与WordNet分类法相结合的框架来监测全局语义相关性评分。此外,实验验证将基于人的语义相关性评分与理论的语义相关性评分进行比较,采用Mann-Kendall趋势检验来揭示公平性和偏见。总的来说,我们的框架通过对公平和偏见提供有价值的见解,引入了一种新的语义相关性监测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring semantic relatedness and revealing fairness and biases through trend tests
An emerging application domain concerning content-based recommender systems provides a better consideration of the semantics behind textual descriptions. Traditional approaches often miss relevant information due to their sole focus on syntax. However, the Semantic Web community has enriched resources with cultural and linguistic background knowledge, offering new standards for word categorization. This paper proposes a framework that combines the information extractor ReVerb with the WordNet taxonomy to monitor global semantic relatedness scores. Additionally, an experimental validation confronts human-based semantic relatedness scores with theoretical ones, employing Mann–Kendall trend tests to reveal fairness and biases. Overall, our framework introduces a novel approach to semantic relatedness monitoring by providing valuable insights into fairness and biases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
期刊最新文献
Integrating trust and satisfaction into the UTAUT model to predict Chatbot adoption – A comparison between Gen-Z and Millennials Assessing industry 5.0 readiness—Prototype of a holistic digital index to evaluate sustainability, resilience and human-centered factors CovKG: A Covid-19 Knowledge Graph for enabling multidimensional analytics on Covid-19 epidemiological data considering spatiotemporal, environmental, health, and socioeconomic aspects Enhancing customer retention with machine learning: A comparative analysis of ensemble models for accurate churn prediction Customization of health insurance premiums using machine learning and explainable AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1