基于位置敏感哈希函数的聚类算法的大规模群体决策模型

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-11-30 DOI:10.1016/j.engappai.2024.109697
Zhangqian Mu , Yuanyuan Liu , Youlong Yang
{"title":"基于位置敏感哈希函数的聚类算法的大规模群体决策模型","authors":"Zhangqian Mu ,&nbsp;Yuanyuan Liu ,&nbsp;Youlong Yang","doi":"10.1016/j.engappai.2024.109697","DOIUrl":null,"url":null,"abstract":"<div><div>With the development of science and technology, an expanding array of decision-makers across various fields, including engineering and medicine, have been participating in collaborative decision-making for complex scenarios, such as earthquake relief and disease containment. The rapidly changing dynamics of real-world decision-making and the high complexity of consensus reaching among decision-makers require the development of more sophisticated models to handle these challenges. Considering the diversity and stability of group categories, this study proposes a large-scale group decision-making model based on a locality sensitive hash function. First, the volatility of attributes in real scenarios is considered, and a time-series decision matrix is constructed based on the average growth rates to make the results closer to reality. Then, hash functions are used to map the decision opinions to different dimensions and express the similarity through the Hamming distance, yielding clustering results with high stability and cohesion. To determine whether the decision-making group can reach a consensus, this study conducts hypothesis testing, adopting the idea of small probability counterfactuals to provide objective and fair standards for threshold judgment. Finally, through the case study and comparative analysis, it is proved that the proposed method improved 26.4% and 4.2% under the criteria of integrated cohesion and global consensus degree, respectively, with better clustering effect.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"140 ","pages":"Article 109697"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A large-scale group decision making model with a clustering algorithm based on a locality sensitive hash function\",\"authors\":\"Zhangqian Mu ,&nbsp;Yuanyuan Liu ,&nbsp;Youlong Yang\",\"doi\":\"10.1016/j.engappai.2024.109697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the development of science and technology, an expanding array of decision-makers across various fields, including engineering and medicine, have been participating in collaborative decision-making for complex scenarios, such as earthquake relief and disease containment. The rapidly changing dynamics of real-world decision-making and the high complexity of consensus reaching among decision-makers require the development of more sophisticated models to handle these challenges. Considering the diversity and stability of group categories, this study proposes a large-scale group decision-making model based on a locality sensitive hash function. First, the volatility of attributes in real scenarios is considered, and a time-series decision matrix is constructed based on the average growth rates to make the results closer to reality. Then, hash functions are used to map the decision opinions to different dimensions and express the similarity through the Hamming distance, yielding clustering results with high stability and cohesion. To determine whether the decision-making group can reach a consensus, this study conducts hypothesis testing, adopting the idea of small probability counterfactuals to provide objective and fair standards for threshold judgment. Finally, through the case study and comparative analysis, it is proved that the proposed method improved 26.4% and 4.2% under the criteria of integrated cohesion and global consensus degree, respectively, with better clustering effect.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"140 \",\"pages\":\"Article 109697\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624018554\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624018554","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着科学技术的发展,包括工程和医学在内的各个领域越来越多的决策者已经参与到地震救援和疾病控制等复杂情景的协同决策中。现实世界决策的快速变化动态和决策者之间达成共识的高度复杂性需要开发更复杂的模型来处理这些挑战。考虑到群体类别的多样性和稳定性,本文提出了一种基于局部敏感哈希函数的大规模群体决策模型。首先,考虑属性在真实场景中的波动性,基于平均增长率构造时间序列决策矩阵,使结果更接近真实;然后,利用哈希函数将决策意见映射到不同维度,并通过汉明距离表示相似度,得到具有高稳定性和高内聚性的聚类结果。为了确定决策群体是否能够达成共识,本研究进行假设检验,采用小概率反事实的思想,为阈值判断提供客观公正的标准。最后,通过案例研究和对比分析,证明该方法在综合凝聚力和全局共识度标准下分别提高了26.4%和4.2%,具有较好的聚类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A large-scale group decision making model with a clustering algorithm based on a locality sensitive hash function
With the development of science and technology, an expanding array of decision-makers across various fields, including engineering and medicine, have been participating in collaborative decision-making for complex scenarios, such as earthquake relief and disease containment. The rapidly changing dynamics of real-world decision-making and the high complexity of consensus reaching among decision-makers require the development of more sophisticated models to handle these challenges. Considering the diversity and stability of group categories, this study proposes a large-scale group decision-making model based on a locality sensitive hash function. First, the volatility of attributes in real scenarios is considered, and a time-series decision matrix is constructed based on the average growth rates to make the results closer to reality. Then, hash functions are used to map the decision opinions to different dimensions and express the similarity through the Hamming distance, yielding clustering results with high stability and cohesion. To determine whether the decision-making group can reach a consensus, this study conducts hypothesis testing, adopting the idea of small probability counterfactuals to provide objective and fair standards for threshold judgment. Finally, through the case study and comparative analysis, it is proved that the proposed method improved 26.4% and 4.2% under the criteria of integrated cohesion and global consensus degree, respectively, with better clustering effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Adaptive model-agnostic meta-learning network for cross-machine fault diagnosis with limited samples Deep interval type-2 generalized fuzzy hyperbolic tangent system for nonlinear regression prediction A multi-scale feature fusion network based on semi-channel attention for seismic phase picking Editorial Board Enhancing camouflaged object detection through contrastive learning and data augmentation techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1