Patrice Baby , Alice Prudhomme , Stéphane Brusset , Alexandra Robert , Martin Roddaz , Ysabel Calderon , Adrien Eude , Willy Gil , Wilber Hermoza , Christian Hurtado , Stéphanie Brichau , Gérôme Calvès , Pierre-Olivier Antoine , Rodolfo Salas-Gismondi
{"title":"安第斯山脉北部中部和安第斯山脉构造演化重访:三个叠加造山带的综合地层和构造模式","authors":"Patrice Baby , Alice Prudhomme , Stéphane Brusset , Alexandra Robert , Martin Roddaz , Ysabel Calderon , Adrien Eude , Willy Gil , Wilber Hermoza , Christian Hurtado , Stéphanie Brichau , Gérôme Calvès , Pierre-Olivier Antoine , Rodolfo Salas-Gismondi","doi":"10.1016/j.earscirev.2024.104998","DOIUrl":null,"url":null,"abstract":"<div><div>The mechanism for crustal thickening and superposition of several orogens is critical for understanding the growth of mountain ranges. Our study focuses on a trans-orogen crustal cross-section to revisit the Andean tectonic evolution in the Northern Central Andes (5°-8°S). It is based on a review of the geological setting, the definition of long-term tectono-sedimentary successions, and for the first time, a crustal balanced cross-section 895 km long through the entire orogen. We show that the Northern Central Andes were born in the Jurassic, and correspond to the superposition of several orogens representing a minimum total shortening of ∼207 km. They were built over 180 Ma during three orogenic periods (180–140 Ma; 100–50 Ma; 30–0 Ma), separated by two post-orogenic periods during which most Andean relieves were erased (140–100 Ma; 50–30 Ma). Each post-orogenic period was recorded by 1) a major regional erosional unconformity sealed by a widespread marine transgression, and 2) extensional tectonics in the forearc. Crustal shortening was driven by westward South America Plate displacement and continental crustal underthrusting, and not by oceanic subduction. The propagation of the Andean wedge has been controlled by successive inversions of two pre-existing rifts. The sequential restoration of the trans-orogen balanced cross-section, constrained by the sedimentary record, provides a realistic picture of each orogenic and post-orogenic stage. For the first time, the pre-Neogene basins are reconstructed respecting the Andean shortening. The first-order factors that have controlled the complex growth evolution of Northern Central Andes are South America Plate dynamics changes associated with shifts in the geometry of the subducting oceanic slab. Some correlations can be established with Phanerozoic climate changes.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"260 ","pages":"Article 104998"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Northern Central Andes and Andean tectonic evolution revisited: An integrated stratigraphic and structural model of three superimposed orogens\",\"authors\":\"Patrice Baby , Alice Prudhomme , Stéphane Brusset , Alexandra Robert , Martin Roddaz , Ysabel Calderon , Adrien Eude , Willy Gil , Wilber Hermoza , Christian Hurtado , Stéphanie Brichau , Gérôme Calvès , Pierre-Olivier Antoine , Rodolfo Salas-Gismondi\",\"doi\":\"10.1016/j.earscirev.2024.104998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mechanism for crustal thickening and superposition of several orogens is critical for understanding the growth of mountain ranges. Our study focuses on a trans-orogen crustal cross-section to revisit the Andean tectonic evolution in the Northern Central Andes (5°-8°S). It is based on a review of the geological setting, the definition of long-term tectono-sedimentary successions, and for the first time, a crustal balanced cross-section 895 km long through the entire orogen. We show that the Northern Central Andes were born in the Jurassic, and correspond to the superposition of several orogens representing a minimum total shortening of ∼207 km. They were built over 180 Ma during three orogenic periods (180–140 Ma; 100–50 Ma; 30–0 Ma), separated by two post-orogenic periods during which most Andean relieves were erased (140–100 Ma; 50–30 Ma). Each post-orogenic period was recorded by 1) a major regional erosional unconformity sealed by a widespread marine transgression, and 2) extensional tectonics in the forearc. Crustal shortening was driven by westward South America Plate displacement and continental crustal underthrusting, and not by oceanic subduction. The propagation of the Andean wedge has been controlled by successive inversions of two pre-existing rifts. The sequential restoration of the trans-orogen balanced cross-section, constrained by the sedimentary record, provides a realistic picture of each orogenic and post-orogenic stage. For the first time, the pre-Neogene basins are reconstructed respecting the Andean shortening. The first-order factors that have controlled the complex growth evolution of Northern Central Andes are South America Plate dynamics changes associated with shifts in the geometry of the subducting oceanic slab. Some correlations can be established with Phanerozoic climate changes.</div></div>\",\"PeriodicalId\":11483,\"journal\":{\"name\":\"Earth-Science Reviews\",\"volume\":\"260 \",\"pages\":\"Article 104998\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth-Science Reviews\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001282522400326X\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth-Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001282522400326X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
The Northern Central Andes and Andean tectonic evolution revisited: An integrated stratigraphic and structural model of three superimposed orogens
The mechanism for crustal thickening and superposition of several orogens is critical for understanding the growth of mountain ranges. Our study focuses on a trans-orogen crustal cross-section to revisit the Andean tectonic evolution in the Northern Central Andes (5°-8°S). It is based on a review of the geological setting, the definition of long-term tectono-sedimentary successions, and for the first time, a crustal balanced cross-section 895 km long through the entire orogen. We show that the Northern Central Andes were born in the Jurassic, and correspond to the superposition of several orogens representing a minimum total shortening of ∼207 km. They were built over 180 Ma during three orogenic periods (180–140 Ma; 100–50 Ma; 30–0 Ma), separated by two post-orogenic periods during which most Andean relieves were erased (140–100 Ma; 50–30 Ma). Each post-orogenic period was recorded by 1) a major regional erosional unconformity sealed by a widespread marine transgression, and 2) extensional tectonics in the forearc. Crustal shortening was driven by westward South America Plate displacement and continental crustal underthrusting, and not by oceanic subduction. The propagation of the Andean wedge has been controlled by successive inversions of two pre-existing rifts. The sequential restoration of the trans-orogen balanced cross-section, constrained by the sedimentary record, provides a realistic picture of each orogenic and post-orogenic stage. For the first time, the pre-Neogene basins are reconstructed respecting the Andean shortening. The first-order factors that have controlled the complex growth evolution of Northern Central Andes are South America Plate dynamics changes associated with shifts in the geometry of the subducting oceanic slab. Some correlations can be established with Phanerozoic climate changes.
期刊介绍:
Covering a much wider field than the usual specialist journals, Earth Science Reviews publishes review articles dealing with all aspects of Earth Sciences, and is an important vehicle for allowing readers to see their particular interest related to the Earth Sciences as a whole.