热孔隙弹性理论在地球物理学中的应用及未来发展

IF 10.8 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Earth-Science Reviews Pub Date : 2024-11-23 DOI:10.1016/j.earscirev.2024.104996
Massimo Nespoli , Hongyu Yu , Antonio Pio Rinaldi , Rebecca Harrington , Maria Elina Belardinelli , Giovanni Martinelli , Antonello Piombo
{"title":"热孔隙弹性理论在地球物理学中的应用及未来发展","authors":"Massimo Nespoli ,&nbsp;Hongyu Yu ,&nbsp;Antonio Pio Rinaldi ,&nbsp;Rebecca Harrington ,&nbsp;Maria Elina Belardinelli ,&nbsp;Giovanni Martinelli ,&nbsp;Antonello Piombo","doi":"10.1016/j.earscirev.2024.104996","DOIUrl":null,"url":null,"abstract":"<div><div>Fluids are naturally present in the crust from subsoil to several kilometers deep. The representation of the Earth's crust as a purely elastic medium ignores the effects of fluids within rock pores. Because the presence of fluids alters the mechanical response of rocks, the theory of poro-elasticity can be used to more accurately represent the deformation and the stress field of the crust, especially when the fluid saturation of rocks is high. In a poro-elastic medium, fluids interact with the hosting rocks through the pore-pressure. If the fluids have significantly different temperatures compared to the surrounding rocks, the theory of poro-elasticity can be generalized to the thermo-poro-elasticity, which also takes into account the effects of the thermal expansion of the medium The geophysical applications of these theoretical frameworks are highly diverse and based on different modeling approaches and assumptions. In this work, we emphasize potential applications of thermo-poro-elasticity theory in developing increasingly complex models of rock-fluid interactions. To do that, we focus on the different modeling approaches employed in some recent models of deep fluid exploitation, reservoir induced seismicity, interaction between seismic faults and fluids, and hydrothermal systems in volcanic zones. Our review paper aims to offer a comprehensive summary of the models, theories, code packages, and applications pertinent to this area and suggest some possible future developments of thermo-(poro-elastic) models in different application areas.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"260 ","pages":"Article 104996"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications and future developments of the (thermo-) poro-elastic theory in geophysics\",\"authors\":\"Massimo Nespoli ,&nbsp;Hongyu Yu ,&nbsp;Antonio Pio Rinaldi ,&nbsp;Rebecca Harrington ,&nbsp;Maria Elina Belardinelli ,&nbsp;Giovanni Martinelli ,&nbsp;Antonello Piombo\",\"doi\":\"10.1016/j.earscirev.2024.104996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fluids are naturally present in the crust from subsoil to several kilometers deep. The representation of the Earth's crust as a purely elastic medium ignores the effects of fluids within rock pores. Because the presence of fluids alters the mechanical response of rocks, the theory of poro-elasticity can be used to more accurately represent the deformation and the stress field of the crust, especially when the fluid saturation of rocks is high. In a poro-elastic medium, fluids interact with the hosting rocks through the pore-pressure. If the fluids have significantly different temperatures compared to the surrounding rocks, the theory of poro-elasticity can be generalized to the thermo-poro-elasticity, which also takes into account the effects of the thermal expansion of the medium The geophysical applications of these theoretical frameworks are highly diverse and based on different modeling approaches and assumptions. In this work, we emphasize potential applications of thermo-poro-elasticity theory in developing increasingly complex models of rock-fluid interactions. To do that, we focus on the different modeling approaches employed in some recent models of deep fluid exploitation, reservoir induced seismicity, interaction between seismic faults and fluids, and hydrothermal systems in volcanic zones. Our review paper aims to offer a comprehensive summary of the models, theories, code packages, and applications pertinent to this area and suggest some possible future developments of thermo-(poro-elastic) models in different application areas.</div></div>\",\"PeriodicalId\":11483,\"journal\":{\"name\":\"Earth-Science Reviews\",\"volume\":\"260 \",\"pages\":\"Article 104996\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth-Science Reviews\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012825224003246\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth-Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012825224003246","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从地下到几公里深的地壳中自然存在着流体。将地壳表示为纯弹性介质忽略了岩石孔隙中流体的影响。由于流体的存在改变了岩石的力学响应,孔隙弹性理论可以更准确地反映地壳的变形和应力场,特别是当岩石流体饱和度较高时。在孔隙弹性介质中,流体通过孔隙压力与承载岩石相互作用。如果流体的温度与围岩有显著差异,则孔隙弹性理论可以推广为热孔隙弹性理论,其中还考虑了介质热膨胀的影响。这些理论框架的地球物理应用是高度多样化的,并且基于不同的建模方法和假设。在这项工作中,我们强调热孔弹性理论在开发日益复杂的岩石-流体相互作用模型中的潜在应用。为了做到这一点,我们将重点放在最近一些深层流体开采、储层诱发地震活动、地震断层与流体相互作用以及火山带热液系统模型中采用的不同建模方法上。本文综述了热(孔弹性)模型的相关模型、理论、代码包和应用,并对热(孔弹性)模型在不同应用领域的发展前景进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applications and future developments of the (thermo-) poro-elastic theory in geophysics
Fluids are naturally present in the crust from subsoil to several kilometers deep. The representation of the Earth's crust as a purely elastic medium ignores the effects of fluids within rock pores. Because the presence of fluids alters the mechanical response of rocks, the theory of poro-elasticity can be used to more accurately represent the deformation and the stress field of the crust, especially when the fluid saturation of rocks is high. In a poro-elastic medium, fluids interact with the hosting rocks through the pore-pressure. If the fluids have significantly different temperatures compared to the surrounding rocks, the theory of poro-elasticity can be generalized to the thermo-poro-elasticity, which also takes into account the effects of the thermal expansion of the medium The geophysical applications of these theoretical frameworks are highly diverse and based on different modeling approaches and assumptions. In this work, we emphasize potential applications of thermo-poro-elasticity theory in developing increasingly complex models of rock-fluid interactions. To do that, we focus on the different modeling approaches employed in some recent models of deep fluid exploitation, reservoir induced seismicity, interaction between seismic faults and fluids, and hydrothermal systems in volcanic zones. Our review paper aims to offer a comprehensive summary of the models, theories, code packages, and applications pertinent to this area and suggest some possible future developments of thermo-(poro-elastic) models in different application areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth-Science Reviews
Earth-Science Reviews 地学-地球科学综合
CiteScore
21.70
自引率
5.80%
发文量
294
审稿时长
15.1 weeks
期刊介绍: Covering a much wider field than the usual specialist journals, Earth Science Reviews publishes review articles dealing with all aspects of Earth Sciences, and is an important vehicle for allowing readers to see their particular interest related to the Earth Sciences as a whole.
期刊最新文献
How “wet islands” form – A case study of the Qilian Mountains on the arid northern Tibetan Plateau during the Middle Miocene Natural records of supercritical fluids in subduction zones Molecular mechanisms and biomineralization processes of ferromanganese nodule formation: Insights its effect on nutrient imbalance and heavy metal immobilization in native soil profiles Abrupt thaw and its effects on permafrost carbon emissions in the Tibetan Plateau: A remote sensing and modeling perspective Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1