天然气长输管道特征智能识别的集成深度学习模型

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL Reliability Engineering & System Safety Pub Date : 2024-11-18 DOI:10.1016/j.ress.2024.110664
Lin Wang , Wannian Guo , Junyu Guo , Shaocong Zheng , Zhiyuan Wang , Hooi Siang Kang , He Li
{"title":"天然气长输管道特征智能识别的集成深度学习模型","authors":"Lin Wang ,&nbsp;Wannian Guo ,&nbsp;Junyu Guo ,&nbsp;Shaocong Zheng ,&nbsp;Zhiyuan Wang ,&nbsp;Hooi Siang Kang ,&nbsp;He Li","doi":"10.1016/j.ress.2024.110664","DOIUrl":null,"url":null,"abstract":"<div><div>Pipeline feature recognition is crucial for the reliability and safety of long-distance natural gas pipelines. Utilizing manual or machine learning methods to recognize pipeline features is not only inefficient, but also has problems such as high misjudgment rate and poor robustness. To overcome the above problems, this paper proposes a pipeline feature recognition method based on Multi-scale Attention Convolutional Neural Network (MACNN) and Gated_Twins_Transformer. MACNN is used to extract multi-scale information of pipeline features, and then the attention mechanism in it to focus on the more important feature information and suppress the less important feature information. It is then transmitted to the Gated_Twins_Transformer model, which uses the gated mechanism and the twins encoder module to determine the importance of the data length and input dimensions, focusing on the feature information of both with different weights, and the Transformer enhances the extraction of global features. Finally, the measured pipeline bending strain data are used as model input, trained and tested, and compared with other advanced models, the superiority of the proposed model in this paper is verified by comparing the metrics of Accuracy, Precision, Recall and F1-score.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"255 ","pages":"Article 110664"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integrated deep learning model for intelligent recognition of long-distance natural gas pipeline features\",\"authors\":\"Lin Wang ,&nbsp;Wannian Guo ,&nbsp;Junyu Guo ,&nbsp;Shaocong Zheng ,&nbsp;Zhiyuan Wang ,&nbsp;Hooi Siang Kang ,&nbsp;He Li\",\"doi\":\"10.1016/j.ress.2024.110664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pipeline feature recognition is crucial for the reliability and safety of long-distance natural gas pipelines. Utilizing manual or machine learning methods to recognize pipeline features is not only inefficient, but also has problems such as high misjudgment rate and poor robustness. To overcome the above problems, this paper proposes a pipeline feature recognition method based on Multi-scale Attention Convolutional Neural Network (MACNN) and Gated_Twins_Transformer. MACNN is used to extract multi-scale information of pipeline features, and then the attention mechanism in it to focus on the more important feature information and suppress the less important feature information. It is then transmitted to the Gated_Twins_Transformer model, which uses the gated mechanism and the twins encoder module to determine the importance of the data length and input dimensions, focusing on the feature information of both with different weights, and the Transformer enhances the extraction of global features. Finally, the measured pipeline bending strain data are used as model input, trained and tested, and compared with other advanced models, the superiority of the proposed model in this paper is verified by comparing the metrics of Accuracy, Precision, Recall and F1-score.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"255 \",\"pages\":\"Article 110664\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095183202400735X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095183202400735X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

管道特征识别对天然气长输管道的可靠性和安全性至关重要。利用人工或机器学习方法识别管道特征不仅效率低下,而且存在误判率高、鲁棒性差等问题。为了克服上述问题,本文提出了一种基于多尺度注意卷积神经网络(MACNN)和Gated_Twins_Transformer的管道特征识别方法。利用MACNN提取管道特征的多尺度信息,然后利用注意机制对重要的特征信息进行集中,对不重要的特征信息进行抑制。然后将其传输到Gated_Twins_Transformer模型,该模型使用门控机制和双胞胎编码器模块确定数据长度和输入维数的重要性,并以不同的权重关注两者的特征信息,Transformer增强了全局特征的提取。最后,将实测的管道弯曲应变数据作为模型输入,进行训练和测试,并通过准确度、精度、召回率和F1-score等指标与其他先进模型进行比较,验证本文模型的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An integrated deep learning model for intelligent recognition of long-distance natural gas pipeline features
Pipeline feature recognition is crucial for the reliability and safety of long-distance natural gas pipelines. Utilizing manual or machine learning methods to recognize pipeline features is not only inefficient, but also has problems such as high misjudgment rate and poor robustness. To overcome the above problems, this paper proposes a pipeline feature recognition method based on Multi-scale Attention Convolutional Neural Network (MACNN) and Gated_Twins_Transformer. MACNN is used to extract multi-scale information of pipeline features, and then the attention mechanism in it to focus on the more important feature information and suppress the less important feature information. It is then transmitted to the Gated_Twins_Transformer model, which uses the gated mechanism and the twins encoder module to determine the importance of the data length and input dimensions, focusing on the feature information of both with different weights, and the Transformer enhances the extraction of global features. Finally, the measured pipeline bending strain data are used as model input, trained and tested, and compared with other advanced models, the superiority of the proposed model in this paper is verified by comparing the metrics of Accuracy, Precision, Recall and F1-score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
期刊最新文献
Image-based remaining useful life prediction through adaptation from simulation to experimental domain Unsupervised graph transfer network with hybrid attention mechanism for fault diagnosis under variable operating conditions A hybrid machine learning and simulation framework for modeling and understanding disinformation-induced disruptions in public transit systems Multiscenario deduction analysis for railway emergencies using knowledge metatheory and dynamic Bayesian networks Generalized reassigning transform: Algorithm and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1