弹性工程在化工和加工工业中新技术事故中的应用综述

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL Reliability Engineering & System Safety Pub Date : 2024-11-20 DOI:10.1016/j.ress.2024.110670
Matteo Valente, Federica Ricci, Valerio Cozzani
{"title":"弹性工程在化工和加工工业中新技术事故中的应用综述","authors":"Matteo Valente,&nbsp;Federica Ricci,&nbsp;Valerio Cozzani","doi":"10.1016/j.ress.2024.110670","DOIUrl":null,"url":null,"abstract":"<div><div>The threat of natural hazards and their devastating consequences is challenging the resilience of society. Especially in industrial areas, where relevant quantities of hazardous materials are handled, natural hazards may trigger severe technological accidents (Natech). Resilience Engineering (RE) principles have been recently introduced in the context of process safety and Natech accidents, aiming at the development of systems able to withstand and rapidly recover from unexpected events. A systematic review of the literature addressing the application of resilience drivers to the framework of Natech assessment and management was carried out, providing a critical evaluation of strategies, methods, and tools proposed for resilience to Natech events. The study focused on chemical and process industries and related sectors, as the petrochemical and energy industry, analysing both quantitative and qualitative approaches. The fundamental aspects necessary to develop methods and tools for the quantitative resilience assessment of industrial facilities facing natural hazards have been identified. These mainly address the phases of the resilience evolution process (REP), the features of Natech scenarios, and the resilience metrics. Gaps and limitations in the state of the art, deserving attention in future research, were identified and discussed. These include the development of a detailed framework for the REP, a comprehensive assessment of the post-accident phases, and the integration of specific features of Natech scenarios. Other important aspects identified are the need to bridge the gap between qualitative and quantitative methods and the importance of developing a multidimensional approach to achieve a comprehensive understanding and assessment of the resilience of facilities exposed to natural hazards.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"255 ","pages":"Article 110670"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic review of Resilience Engineering applications to Natech accidents in the chemical and process industry\",\"authors\":\"Matteo Valente,&nbsp;Federica Ricci,&nbsp;Valerio Cozzani\",\"doi\":\"10.1016/j.ress.2024.110670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The threat of natural hazards and their devastating consequences is challenging the resilience of society. Especially in industrial areas, where relevant quantities of hazardous materials are handled, natural hazards may trigger severe technological accidents (Natech). Resilience Engineering (RE) principles have been recently introduced in the context of process safety and Natech accidents, aiming at the development of systems able to withstand and rapidly recover from unexpected events. A systematic review of the literature addressing the application of resilience drivers to the framework of Natech assessment and management was carried out, providing a critical evaluation of strategies, methods, and tools proposed for resilience to Natech events. The study focused on chemical and process industries and related sectors, as the petrochemical and energy industry, analysing both quantitative and qualitative approaches. The fundamental aspects necessary to develop methods and tools for the quantitative resilience assessment of industrial facilities facing natural hazards have been identified. These mainly address the phases of the resilience evolution process (REP), the features of Natech scenarios, and the resilience metrics. Gaps and limitations in the state of the art, deserving attention in future research, were identified and discussed. These include the development of a detailed framework for the REP, a comprehensive assessment of the post-accident phases, and the integration of specific features of Natech scenarios. Other important aspects identified are the need to bridge the gap between qualitative and quantitative methods and the importance of developing a multidimensional approach to achieve a comprehensive understanding and assessment of the resilience of facilities exposed to natural hazards.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"255 \",\"pages\":\"Article 110670\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024007415\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024007415","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

自然灾害的威胁及其破坏性后果正在挑战社会的复原力。特别是在工业领域,在那里处理了相当数量的危险材料,自然灾害可能引发严重的技术事故(Natech)。弹性工程(RE)原则最近在过程安全和Natech事故的背景下被引入,旨在开发能够承受并从意外事件中快速恢复的系统。本文系统回顾了有关弹性驱动因素在Natech评估和管理框架中的应用的文献,对Natech事件弹性的策略、方法和工具进行了批判性评估。这项研究的重点是化学和加工工业及有关部门,如石油化学和能源工业,分析了定量和定性方法。已经确定了开发对面临自然灾害的工业设施进行定量恢复力评估的方法和工具所必需的基本方面。这些主要涉及弹性演化过程(REP)的阶段、Natech场景的特征和弹性度量。确定并讨论了目前技术状况中值得今后研究注意的差距和限制。其中包括制定详细的REP框架,对事故后阶段进行全面评估,以及整合Natech场景的特定功能。确定的其他重要方面是需要弥合定性方法和定量方法之间的差距,以及必须制定一种多层面办法,以全面了解和评估遭受自然灾害的设施的复原力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A systematic review of Resilience Engineering applications to Natech accidents in the chemical and process industry
The threat of natural hazards and their devastating consequences is challenging the resilience of society. Especially in industrial areas, where relevant quantities of hazardous materials are handled, natural hazards may trigger severe technological accidents (Natech). Resilience Engineering (RE) principles have been recently introduced in the context of process safety and Natech accidents, aiming at the development of systems able to withstand and rapidly recover from unexpected events. A systematic review of the literature addressing the application of resilience drivers to the framework of Natech assessment and management was carried out, providing a critical evaluation of strategies, methods, and tools proposed for resilience to Natech events. The study focused on chemical and process industries and related sectors, as the petrochemical and energy industry, analysing both quantitative and qualitative approaches. The fundamental aspects necessary to develop methods and tools for the quantitative resilience assessment of industrial facilities facing natural hazards have been identified. These mainly address the phases of the resilience evolution process (REP), the features of Natech scenarios, and the resilience metrics. Gaps and limitations in the state of the art, deserving attention in future research, were identified and discussed. These include the development of a detailed framework for the REP, a comprehensive assessment of the post-accident phases, and the integration of specific features of Natech scenarios. Other important aspects identified are the need to bridge the gap between qualitative and quantitative methods and the importance of developing a multidimensional approach to achieve a comprehensive understanding and assessment of the resilience of facilities exposed to natural hazards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
期刊最新文献
Image-based remaining useful life prediction through adaptation from simulation to experimental domain Unsupervised graph transfer network with hybrid attention mechanism for fault diagnosis under variable operating conditions A hybrid machine learning and simulation framework for modeling and understanding disinformation-induced disruptions in public transit systems Multiscenario deduction analysis for railway emergencies using knowledge metatheory and dynamic Bayesian networks Generalized reassigning transform: Algorithm and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1