改进的基于多重惩罚机制的损失函数,用于更真实的航空发动机RUL预估

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL Reliability Engineering & System Safety Pub Date : 2024-11-19 DOI:10.1016/j.ress.2024.110666
Chaojing Lin , Yunxiao Chen , Mingliang Bai , Zhenhua Long , Peng Yao , Jinfu Liu , Daren Yu
{"title":"改进的基于多重惩罚机制的损失函数,用于更真实的航空发动机RUL预估","authors":"Chaojing Lin ,&nbsp;Yunxiao Chen ,&nbsp;Mingliang Bai ,&nbsp;Zhenhua Long ,&nbsp;Peng Yao ,&nbsp;Jinfu Liu ,&nbsp;Daren Yu","doi":"10.1016/j.ress.2024.110666","DOIUrl":null,"url":null,"abstract":"<div><div>The aeroengine remaining useful life (RUL) prediction is conducive to formulating maintenance plans, assisting maintenance decisions, and improving the intelligent operation and maintenance level. When the engine is in a degraded state, the maintenance personnel tend to prediction advance rather than prediction delay. However, the current RUL prediction researches mainly focus on accurate prediction, and pay little attention to the realistic demand of advanced prediction. Aiming at this problem, this paper proposes a multiple penalty mechanism (MPM) based loss function combined with similarity RUL prediction. This research first uses multi-dimensional sensor data to construct a health index (HI) that characterizes the engine health status, then matches the HI similarity by derivative dynamic time warping corrected with different sequence length (DDTW-DSL). Finally, the MPM loss function assists the neural network to realize the mapping from HI to RUL. The method is verified by NASA's Commercial Modular Aero-Propulsion System Simulation dataset. The results show that compared with the traditional RMSE loss function, the MPM loss function can significantly improve the advanced prediction probability and effectively avoid RUL prediction lag. Compared with the existing methods, the novel method has advantages in both RUL prediction effect and model complexity.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"255 ","pages":"Article 110666"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved multiple penalty mechanism based loss function for more realistic aeroengine RUL advanced prediction\",\"authors\":\"Chaojing Lin ,&nbsp;Yunxiao Chen ,&nbsp;Mingliang Bai ,&nbsp;Zhenhua Long ,&nbsp;Peng Yao ,&nbsp;Jinfu Liu ,&nbsp;Daren Yu\",\"doi\":\"10.1016/j.ress.2024.110666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aeroengine remaining useful life (RUL) prediction is conducive to formulating maintenance plans, assisting maintenance decisions, and improving the intelligent operation and maintenance level. When the engine is in a degraded state, the maintenance personnel tend to prediction advance rather than prediction delay. However, the current RUL prediction researches mainly focus on accurate prediction, and pay little attention to the realistic demand of advanced prediction. Aiming at this problem, this paper proposes a multiple penalty mechanism (MPM) based loss function combined with similarity RUL prediction. This research first uses multi-dimensional sensor data to construct a health index (HI) that characterizes the engine health status, then matches the HI similarity by derivative dynamic time warping corrected with different sequence length (DDTW-DSL). Finally, the MPM loss function assists the neural network to realize the mapping from HI to RUL. The method is verified by NASA's Commercial Modular Aero-Propulsion System Simulation dataset. The results show that compared with the traditional RMSE loss function, the MPM loss function can significantly improve the advanced prediction probability and effectively avoid RUL prediction lag. Compared with the existing methods, the novel method has advantages in both RUL prediction effect and model complexity.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"255 \",\"pages\":\"Article 110666\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024007373\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024007373","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

航空发动机剩余使用寿命(RUL)预测有利于制定维修计划,辅助维修决策,提高智能运维水平。当发动机处于退化状态时,维修人员倾向于预测提前而不是预测延迟。然而,目前的RUL预测研究主要集中在准确预测上,很少关注超前预测的现实需求。针对这一问题,本文提出了一种基于多重惩罚机制(MPM)的损失函数,并结合相似RUL预测。本研究首先利用多维传感器数据构建表征发动机健康状态的健康指数(HI),然后通过不同序列长度修正的导数动态时间规整(DDTW-DSL)对HI相似度进行匹配。最后,MPM损失函数帮助神经网络实现从HI到RUL的映射。该方法通过NASA的商用模块化航空推进系统仿真数据集进行了验证。结果表明,与传统的RMSE损失函数相比,MPM损失函数能显著提高超前预测概率,有效避免RUL预测滞后。与现有方法相比,该方法在RUL预测效果和模型复杂度方面都具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved multiple penalty mechanism based loss function for more realistic aeroengine RUL advanced prediction
The aeroengine remaining useful life (RUL) prediction is conducive to formulating maintenance plans, assisting maintenance decisions, and improving the intelligent operation and maintenance level. When the engine is in a degraded state, the maintenance personnel tend to prediction advance rather than prediction delay. However, the current RUL prediction researches mainly focus on accurate prediction, and pay little attention to the realistic demand of advanced prediction. Aiming at this problem, this paper proposes a multiple penalty mechanism (MPM) based loss function combined with similarity RUL prediction. This research first uses multi-dimensional sensor data to construct a health index (HI) that characterizes the engine health status, then matches the HI similarity by derivative dynamic time warping corrected with different sequence length (DDTW-DSL). Finally, the MPM loss function assists the neural network to realize the mapping from HI to RUL. The method is verified by NASA's Commercial Modular Aero-Propulsion System Simulation dataset. The results show that compared with the traditional RMSE loss function, the MPM loss function can significantly improve the advanced prediction probability and effectively avoid RUL prediction lag. Compared with the existing methods, the novel method has advantages in both RUL prediction effect and model complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
期刊最新文献
Image-based remaining useful life prediction through adaptation from simulation to experimental domain Unsupervised graph transfer network with hybrid attention mechanism for fault diagnosis under variable operating conditions A hybrid machine learning and simulation framework for modeling and understanding disinformation-induced disruptions in public transit systems Multiscenario deduction analysis for railway emergencies using knowledge metatheory and dynamic Bayesian networks Generalized reassigning transform: Algorithm and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1