{"title":"基于可信赖贝叶斯深度学习框架的不确定性量化与置信度定标:在机械故障诊断中的应用","authors":"Hao Li, Jinyang Jiao, Zongyang Liu, Jing Lin, Tian Zhang, Hanyang Liu","doi":"10.1016/j.ress.2024.110657","DOIUrl":null,"url":null,"abstract":"<div><div>Reliable and accurate machinery fault diagnosis is crucial for ensuring operational safety and reducing downtime in industrial settings. Traditional intelligent diagnosis methods only focus on improving the accuracy of in-distribution samples, but neglect the trustworthiness evaluation of diagnosis results. To address these issues, this paper developed a novel trustworthy machinery fault diagnosis (TMFD) method, which integrates Bayesian deep learning techniques with model calibration strategies. Specifically, TMFD regards a Bayesian convolutional neural network framework as the backbone. Then, we introduce α-divergence to facilitate the decomposition and quantification of epistemic uncertainty and aleatoric uncertainty, ultimately achieving out-of-distribution sample detection through epistemic uncertainty. Then, the ante-calibration loss constraint and the compositional post-calibration operation are jointly applied to promote data-efficient and high expressive calibration for in-distribution sample diagnosis confidence. Finally, TMFD is validated using three experimental datasets, demonstrating its effectiveness and robustness in machinery fault diagnosis.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"255 ","pages":"Article 110657"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trustworthy Bayesian deep learning framework for uncertainty quantification and confidence calibration: Application in machinery fault diagnosis\",\"authors\":\"Hao Li, Jinyang Jiao, Zongyang Liu, Jing Lin, Tian Zhang, Hanyang Liu\",\"doi\":\"10.1016/j.ress.2024.110657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reliable and accurate machinery fault diagnosis is crucial for ensuring operational safety and reducing downtime in industrial settings. Traditional intelligent diagnosis methods only focus on improving the accuracy of in-distribution samples, but neglect the trustworthiness evaluation of diagnosis results. To address these issues, this paper developed a novel trustworthy machinery fault diagnosis (TMFD) method, which integrates Bayesian deep learning techniques with model calibration strategies. Specifically, TMFD regards a Bayesian convolutional neural network framework as the backbone. Then, we introduce α-divergence to facilitate the decomposition and quantification of epistemic uncertainty and aleatoric uncertainty, ultimately achieving out-of-distribution sample detection through epistemic uncertainty. Then, the ante-calibration loss constraint and the compositional post-calibration operation are jointly applied to promote data-efficient and high expressive calibration for in-distribution sample diagnosis confidence. Finally, TMFD is validated using three experimental datasets, demonstrating its effectiveness and robustness in machinery fault diagnosis.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"255 \",\"pages\":\"Article 110657\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024007282\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024007282","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Trustworthy Bayesian deep learning framework for uncertainty quantification and confidence calibration: Application in machinery fault diagnosis
Reliable and accurate machinery fault diagnosis is crucial for ensuring operational safety and reducing downtime in industrial settings. Traditional intelligent diagnosis methods only focus on improving the accuracy of in-distribution samples, but neglect the trustworthiness evaluation of diagnosis results. To address these issues, this paper developed a novel trustworthy machinery fault diagnosis (TMFD) method, which integrates Bayesian deep learning techniques with model calibration strategies. Specifically, TMFD regards a Bayesian convolutional neural network framework as the backbone. Then, we introduce α-divergence to facilitate the decomposition and quantification of epistemic uncertainty and aleatoric uncertainty, ultimately achieving out-of-distribution sample detection through epistemic uncertainty. Then, the ante-calibration loss constraint and the compositional post-calibration operation are jointly applied to promote data-efficient and high expressive calibration for in-distribution sample diagnosis confidence. Finally, TMFD is validated using three experimental datasets, demonstrating its effectiveness and robustness in machinery fault diagnosis.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.