基于可信赖贝叶斯深度学习框架的不确定性量化与置信度定标:在机械故障诊断中的应用

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL Reliability Engineering & System Safety Pub Date : 2024-11-13 DOI:10.1016/j.ress.2024.110657
Hao Li, Jinyang Jiao, Zongyang Liu, Jing Lin, Tian Zhang, Hanyang Liu
{"title":"基于可信赖贝叶斯深度学习框架的不确定性量化与置信度定标:在机械故障诊断中的应用","authors":"Hao Li,&nbsp;Jinyang Jiao,&nbsp;Zongyang Liu,&nbsp;Jing Lin,&nbsp;Tian Zhang,&nbsp;Hanyang Liu","doi":"10.1016/j.ress.2024.110657","DOIUrl":null,"url":null,"abstract":"<div><div>Reliable and accurate machinery fault diagnosis is crucial for ensuring operational safety and reducing downtime in industrial settings. Traditional intelligent diagnosis methods only focus on improving the accuracy of in-distribution samples, but neglect the trustworthiness evaluation of diagnosis results. To address these issues, this paper developed a novel trustworthy machinery fault diagnosis (TMFD) method, which integrates Bayesian deep learning techniques with model calibration strategies. Specifically, TMFD regards a Bayesian convolutional neural network framework as the backbone. Then, we introduce α-divergence to facilitate the decomposition and quantification of epistemic uncertainty and aleatoric uncertainty, ultimately achieving out-of-distribution sample detection through epistemic uncertainty. Then, the ante-calibration loss constraint and the compositional post-calibration operation are jointly applied to promote data-efficient and high expressive calibration for in-distribution sample diagnosis confidence. Finally, TMFD is validated using three experimental datasets, demonstrating its effectiveness and robustness in machinery fault diagnosis.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"255 ","pages":"Article 110657"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trustworthy Bayesian deep learning framework for uncertainty quantification and confidence calibration: Application in machinery fault diagnosis\",\"authors\":\"Hao Li,&nbsp;Jinyang Jiao,&nbsp;Zongyang Liu,&nbsp;Jing Lin,&nbsp;Tian Zhang,&nbsp;Hanyang Liu\",\"doi\":\"10.1016/j.ress.2024.110657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reliable and accurate machinery fault diagnosis is crucial for ensuring operational safety and reducing downtime in industrial settings. Traditional intelligent diagnosis methods only focus on improving the accuracy of in-distribution samples, but neglect the trustworthiness evaluation of diagnosis results. To address these issues, this paper developed a novel trustworthy machinery fault diagnosis (TMFD) method, which integrates Bayesian deep learning techniques with model calibration strategies. Specifically, TMFD regards a Bayesian convolutional neural network framework as the backbone. Then, we introduce α-divergence to facilitate the decomposition and quantification of epistemic uncertainty and aleatoric uncertainty, ultimately achieving out-of-distribution sample detection through epistemic uncertainty. Then, the ante-calibration loss constraint and the compositional post-calibration operation are jointly applied to promote data-efficient and high expressive calibration for in-distribution sample diagnosis confidence. Finally, TMFD is validated using three experimental datasets, demonstrating its effectiveness and robustness in machinery fault diagnosis.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"255 \",\"pages\":\"Article 110657\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024007282\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024007282","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

可靠和准确的机械故障诊断对于确保操作安全和减少工业环境中的停机时间至关重要。传统的智能诊断方法只注重提高分布样本的准确性,而忽视了诊断结果的可信度评价。为了解决这些问题,本文开发了一种新的可信机械故障诊断(TMFD)方法,该方法将贝叶斯深度学习技术与模型校准策略相结合。具体而言,TMFD以贝叶斯卷积神经网络框架为骨干。然后,我们引入α-散度,便于对认知不确定性和任意不确定性进行分解和量化,最终通过认知不确定性实现分布外样本检测。然后,结合校正前损失约束和组合校正后操作,实现分布样本诊断置信度的数据高效、高表达校正。最后,利用三个实验数据集对TMFD进行了验证,验证了其在机械故障诊断中的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trustworthy Bayesian deep learning framework for uncertainty quantification and confidence calibration: Application in machinery fault diagnosis
Reliable and accurate machinery fault diagnosis is crucial for ensuring operational safety and reducing downtime in industrial settings. Traditional intelligent diagnosis methods only focus on improving the accuracy of in-distribution samples, but neglect the trustworthiness evaluation of diagnosis results. To address these issues, this paper developed a novel trustworthy machinery fault diagnosis (TMFD) method, which integrates Bayesian deep learning techniques with model calibration strategies. Specifically, TMFD regards a Bayesian convolutional neural network framework as the backbone. Then, we introduce α-divergence to facilitate the decomposition and quantification of epistemic uncertainty and aleatoric uncertainty, ultimately achieving out-of-distribution sample detection through epistemic uncertainty. Then, the ante-calibration loss constraint and the compositional post-calibration operation are jointly applied to promote data-efficient and high expressive calibration for in-distribution sample diagnosis confidence. Finally, TMFD is validated using three experimental datasets, demonstrating its effectiveness and robustness in machinery fault diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
期刊最新文献
Image-based remaining useful life prediction through adaptation from simulation to experimental domain Unsupervised graph transfer network with hybrid attention mechanism for fault diagnosis under variable operating conditions A hybrid machine learning and simulation framework for modeling and understanding disinformation-induced disruptions in public transit systems Multiscenario deduction analysis for railway emergencies using knowledge metatheory and dynamic Bayesian networks Generalized reassigning transform: Algorithm and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1