基于图形的代理模拟:协调方案对关键基础设施弹性的影响

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL Reliability Engineering & System Safety Pub Date : 2024-11-22 DOI:10.1016/j.ress.2024.110658
Shima Mohebbi , Babak Aslani , Mark Herman Dsouza
{"title":"基于图形的代理模拟:协调方案对关键基础设施弹性的影响","authors":"Shima Mohebbi ,&nbsp;Babak Aslani ,&nbsp;Mark Herman Dsouza","doi":"10.1016/j.ress.2024.110658","DOIUrl":null,"url":null,"abstract":"<div><div>Critical infrastructure systems are governed by several sectors working together to maintain social, economic, and environmental well-being. Their cyber–physical interdependencies influence their performance and resilience to routine failures and extreme events. To balance investment and restoration decisions in the face of disruptive events, mostly centralized mathematical formulations and solutions were presented in the literature. However, not all physical and dynamic characteristics of infrastructure systems and their decision makers can be modeled via mathematical models. In this study, we take a different approach and utilize agent-based modeling to simulate city-scale interdependent infrastructure networks as a complex adaptive system. In specific, we design a flexible modular (object-oriented) simulation tool capable of capturing the dynamic behaviors of various networks. We first model each infrastructure as a weighted graph with relevant geospatial attributes. Decision makers for each infrastructure sector are represented by intelligent agents. We then define three information and coordination schemes among agents, including no communication, leader–follower, and decentralized coalitions. To show the applicability of the approach, we use publicly available interdependent water distribution and road networks for the City of Tampa, FL, which is prone to hurricanes. We simulate different magnitudes of physical, cyber, and cyber–physical failures, evaluate resource allocation decisions, made by agents under each coordination scheme, and quantify the aggregated resilience. The simulation platform will help municipalities in various cities to quantify the impact of their collective decision making and identify the best coordination structures when interdependencies are modeled in infrastructure systems.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"255 ","pages":"Article 110658"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A graph-empowered agent-based simulation: Impacts of coordination schemes on critical infrastructures resilience\",\"authors\":\"Shima Mohebbi ,&nbsp;Babak Aslani ,&nbsp;Mark Herman Dsouza\",\"doi\":\"10.1016/j.ress.2024.110658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Critical infrastructure systems are governed by several sectors working together to maintain social, economic, and environmental well-being. Their cyber–physical interdependencies influence their performance and resilience to routine failures and extreme events. To balance investment and restoration decisions in the face of disruptive events, mostly centralized mathematical formulations and solutions were presented in the literature. However, not all physical and dynamic characteristics of infrastructure systems and their decision makers can be modeled via mathematical models. In this study, we take a different approach and utilize agent-based modeling to simulate city-scale interdependent infrastructure networks as a complex adaptive system. In specific, we design a flexible modular (object-oriented) simulation tool capable of capturing the dynamic behaviors of various networks. We first model each infrastructure as a weighted graph with relevant geospatial attributes. Decision makers for each infrastructure sector are represented by intelligent agents. We then define three information and coordination schemes among agents, including no communication, leader–follower, and decentralized coalitions. To show the applicability of the approach, we use publicly available interdependent water distribution and road networks for the City of Tampa, FL, which is prone to hurricanes. We simulate different magnitudes of physical, cyber, and cyber–physical failures, evaluate resource allocation decisions, made by agents under each coordination scheme, and quantify the aggregated resilience. The simulation platform will help municipalities in various cities to quantify the impact of their collective decision making and identify the best coordination structures when interdependencies are modeled in infrastructure systems.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"255 \",\"pages\":\"Article 110658\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832024007294\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024007294","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

关键的基础设施系统由几个部门共同管理,以维持社会、经济和环境的福祉。它们的网络物理相互依赖关系影响它们的性能和对常规故障和极端事件的恢复能力。为了在面对破坏性事件时平衡投资和恢复决策,文献中大多采用集中的数学公式和解决方案。然而,并不是基础设施系统及其决策者的所有物理和动态特征都可以通过数学模型来建模。在本研究中,我们采用不同的方法,利用基于智能体的建模来模拟城市规模的相互依赖的基础设施网络作为一个复杂的自适应系统。具体而言,我们设计了一个灵活的模块化(面向对象)仿真工具,能够捕获各种网络的动态行为。我们首先将每个基础设施建模为具有相关地理空间属性的加权图。每个基础设施部门的决策者由智能代理代表。然后,我们定义了三种代理之间的信息和协调方案,包括无通信、领导-追随者和分散联盟。为了展示该方法的适用性,我们在佛罗里达州坦帕市使用了公开可用的相互依赖的水分配和道路网络,该城市容易受到飓风的影响。我们模拟了不同程度的物理、网络和网络物理故障,评估了代理在每种协调方案下做出的资源分配决策,并量化了总体弹性。该模拟平台将帮助各个城市的市政当局量化其集体决策的影响,并在基础设施系统中对相互依赖关系进行建模时确定最佳协调结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A graph-empowered agent-based simulation: Impacts of coordination schemes on critical infrastructures resilience
Critical infrastructure systems are governed by several sectors working together to maintain social, economic, and environmental well-being. Their cyber–physical interdependencies influence their performance and resilience to routine failures and extreme events. To balance investment and restoration decisions in the face of disruptive events, mostly centralized mathematical formulations and solutions were presented in the literature. However, not all physical and dynamic characteristics of infrastructure systems and their decision makers can be modeled via mathematical models. In this study, we take a different approach and utilize agent-based modeling to simulate city-scale interdependent infrastructure networks as a complex adaptive system. In specific, we design a flexible modular (object-oriented) simulation tool capable of capturing the dynamic behaviors of various networks. We first model each infrastructure as a weighted graph with relevant geospatial attributes. Decision makers for each infrastructure sector are represented by intelligent agents. We then define three information and coordination schemes among agents, including no communication, leader–follower, and decentralized coalitions. To show the applicability of the approach, we use publicly available interdependent water distribution and road networks for the City of Tampa, FL, which is prone to hurricanes. We simulate different magnitudes of physical, cyber, and cyber–physical failures, evaluate resource allocation decisions, made by agents under each coordination scheme, and quantify the aggregated resilience. The simulation platform will help municipalities in various cities to quantify the impact of their collective decision making and identify the best coordination structures when interdependencies are modeled in infrastructure systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
期刊最新文献
Image-based remaining useful life prediction through adaptation from simulation to experimental domain Unsupervised graph transfer network with hybrid attention mechanism for fault diagnosis under variable operating conditions A hybrid machine learning and simulation framework for modeling and understanding disinformation-induced disruptions in public transit systems Multiscenario deduction analysis for railway emergencies using knowledge metatheory and dynamic Bayesian networks Generalized reassigning transform: Algorithm and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1